Cas12n nucleases, early evolutionary intermediates of type V CRISPR, comprise a distinct family of miniature genome editors

被引:32
|
作者
Chen, Weizhong [1 ,2 ]
Ma, Jiacheng [1 ]
Wu, Zhaowei [1 ]
Wang, Zhipeng [1 ]
Zhang, Hongyuan [1 ]
Fu, Wenhan [1 ]
Pan, Deng [1 ]
Shi, Jin [1 ]
Ji, Quanjiang [1 ,3 ]
机构
[1] ShanghaiTech Univ, Sch Phys Sci & Technol, Shanghai 201210, Peoples R China
[2] Ningbo Univ, Sch Marine Sci, Ningbo 315832, Zhejiang, Peoples R China
[3] ShanghaiTech Univ, Gene Editing Ctr, Sch Life Sci & Technol, Shanghai 201210, Peoples R China
基金
中国国家自然科学基金;
关键词
STRUCTURAL BASIS; DNA; CLEAVAGE; SYSTEMS; ENDONUCLEASE; RECOGNITION; ALIGNMENT; COMPLEX; CPF1; PHI;
D O I
10.1016/j.molcel.2023.06.014
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Type V CRISPR-associated systems (Cas)12 family nucleases are considered to have evolved from transposon-associated TnpB, and several of these nucleases have been engineered as versatile genome editors. Despite the conserved RNA-guided DNA-cleaving functionality, these Cas12 nucleases differ markedly from the currently identified ancestor TnpB in aspects such as guide RNA origination, effector complex composition, and protospacer adjacent motif (PAM) specificity, suggesting the presence of earlier evolutionary intermediates that could be mined to develop advanced genome manipulation biotechnologies. Using evolutionary and biochemical analyses, we identify that the miniature type V-U4 nuclease (referred to as Cas12n, 400-700 amino acids) is likely the earliest evolutionary intermediate between TnpB and large type V CRISPR systems. We demonstrate that with the exception of CRISPR array emergence, CRISPR-Cas12n shares several similar characteristics with TnpB-uRNA, including a miniature and likely monomeric nuclease for DNA targeting, origination of guide RNA from nuclease coding sequence, and generation of a small sticky end following DNA cleavage. Cas12n nucleases recognize a unique 50-AAN PAM sequence, of which the A nucleotide at the-2 position is also required for TnpB. Moreover, we demonstrate the robust genome-editing capacity of Cas12n in bacteria and engineer a highly efficient CRISPR-Cas12n (termed Cas12Pro) with up to 80% indel efficiency in human cells. The engineered Cas12Pro enables base editing in human cells. Our results further expand the understanding regarding type V CRISPR evolutionary mechanisms and enrich the miniature CRISPR toolbox for therapeutic applications.
引用
收藏
页码:2768 / +
页数:20
相关论文
共 3 条
  • [1] Miniature type V-F CRISPR-Cas nucleases enable targeted DNA modification in cells
    Bigelyte, Greta
    Young, Joshua K.
    Karvelis, Tautvydas
    Budre, Karolina
    Zedaveinyte, Rimante
    Djukanovic, Vesna
    Van Ginkel, Elizabeth
    Paulraj, Sushmitha
    Gasior, Stephen
    Jones, Spencer
    Feigenbutz, Lanie
    St Clair, Grace
    Barone, Pierluigi
    Bohn, Jennifer
    Acharya, Ananta
    Zastrow-Hayes, Gina
    Henkel-Heinecke, Selgar
    Silanskas, Arunas
    Seidel, Ralf
    Siksnys, Virginijus
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [2] Miniature type V-F CRISPR-Cas nucleases enable targeted DNA modification in cells
    Greta Bigelyte
    Joshua K. Young
    Tautvydas Karvelis
    Karolina Budre
    Rimante Zedaveinyte
    Vesna Djukanovic
    Elizabeth Van Ginkel
    Sushmitha Paulraj
    Stephen Gasior
    Spencer Jones
    Lanie Feigenbutz
    Grace St. Clair
    Pierluigi Barone
    Jennifer Bohn
    Ananta Acharya
    Gina Zastrow-Hayes
    Selgar Henkel-Heinecke
    Arunas Silanskas
    Ralf Seidel
    Virginijus Siksnys
    Nature Communications, 12
  • [3] Low-Toxicity and High-Efficiency Streptomyces Genome Editing Tool Based on the Miniature Type V-F CRISPR/Cas Nuclease AsCas12f1
    Hua, Hui-Min
    Xu, Jia-Feng
    Huang, Xue-Shuang
    Zimin, Andrei A.
    Wang, Wen-Fang
    Lu, Yin-Hua
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2024, 72 (10) : 5358 - 5367