Time-dependent virtual crack model of rock with application to slope stability

被引:2
|
作者
Yu, Xian-yang [1 ]
Xu, Tao [2 ]
Heap, Michael J. [3 ,4 ]
Heng, Zhen [2 ]
Ranjith, P. G. [5 ]
Su, Boyi [2 ]
Wasantha, P. L. P. [6 ]
Sun, Guanhua [1 ]
机构
[1] Chinese Acad Sci, Inst Rock & Soil Mech, State Key Laboratofary Geomech & Geotech Engn, Wuhan 430071, Peoples R China
[2] Northeastern Univ, Ctr Rock Instabil & Seism Res, Shenyang 110819, Peoples R China
[3] Univ Strasbourg, Inst Terre & Environm Strasbourg, CNRS, UMR 7063, 5 Rue Rene Descartes, F-67084 Strasbourg, France
[4] Inst Univ France IUF, Paris, France
[5] Monash Univ, Dept Civil Engn, Deep Earth Energy Lab, Bldg 60, Melbourne, Vic 3800, Australia
[6] Victoria Univ, Coll Engn & Sci, Melbourne, Australia
关键词
Numerical manifold method; Time -dependent deformation; Subcritical crack growth; Granite; Virtual crack; Slope; NUMERICAL MANIFOLD METHOD; CONSTITUTIVE MODEL; STATIC FATIGUE; BRITTLE CREEP; BEHAVIOR; GROWTH; DEFORMATION; PROPAGATION; GRANITE; TEMPERATURE;
D O I
10.1016/j.enganabound.2023.05.043
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Time-dependent deformation of rock involves the continuous to discontinuous deformation of joints, cracks, holes, and other defects under long-term stress conditions. Thus, it is of great significance to investigate the correlation between internal crack propagation in rock and external time-dependent damage and failure of rock to better understand the long-term stability of engineering rock mass. Here, we put forward a time-dependent virtual crack model to achieve the entire continuous-discontinuous time-dependent deformation progress of rock from the microscopic to the macroscopic scale. Simulated stress-strain curves for granite, including the mode of failure (axial splitting and Brazilian splitting), agree well with experimental data. We also used the virtual crack model to study the stability of one of the slopes of the Xiaowan Hydropower Station (China). The simulation results indicate that the weakly disturbed zone is the potential sliding surface, and that the defor-mation of the slope is similar to in-situ measurements. In the model, the vertical displacement decreased by 500 mm in 180 days and the axial strain rate decreased from 25 mm/d to zero, suggested that the slope is currently stable.
引用
收藏
页码:172 / 185
页数:14
相关论文
共 50 条
  • [1] A three-dimensional mesoscale model for progressive time-dependent deformation and fracturing of brittle rock with application to slope stability
    Yuan, Yang
    Xu, Tao
    Heap, Michael J.
    Meredith, Philip G.
    Yang, Tianhong
    Zhou, Guanglei
    COMPUTERS AND GEOTECHNICS, 2021, 135 (135)
  • [2] Time-dependent stability of an excavated slope
    Kirkebo, S
    Nordal, S
    Svano, G
    LANDSLIDES-BK, 1996, : 1269 - 1275
  • [3] Time-dependent stability of excavations in jointed rock
    Fakhimi, AA
    Fairhurst, C
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY, 1996, 20 (03): : 251 - 272
  • [4] A MODEL FOR THE TIME-DEPENDENT BEHAVIOR OF ROCK
    FAKHIM, AA
    FAIRHURST, C
    INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES & GEOMECHANICS ABSTRACTS, 1994, 31 (02) : 117 - 126
  • [5] PHENOMENOLOGICAL MODEL FOR ROCK WITH TIME-DEPENDENT STRENGTH
    KAISER, PK
    MORGENSTERN, NR
    INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES, 1981, 18 (02): : 153 - 165
  • [6] Application of time-dependent model in tunnelling
    Purwodihardjo, A
    Cambou, B
    DEFORMATION CHARACTERISTICS OF GEOMATERIALS, 2003, : 1043 - 1050
  • [7] Time-dependent theoretical model of rock strength evolution
    Zhou, H. (hzhou@whrsm.ac.cn), 1600, Academia Sinica (35):
  • [8] A Simplified Model for Time-Dependent Deformation of Rock Joints
    Wang, Mingzheng
    Cai, Ming
    ROCK MECHANICS AND ROCK ENGINEERING, 2021, 54 (04) : 1779 - 1797
  • [9] A Time-Dependent Double Hardening Model for Soft Rock
    Siddiquee, Mohammed Saiful Alam
    Hamdi, Amin
    ADVANCES IN CIVIL ENGINEERING, 2019, 2019
  • [10] A Simplified Model for Time-Dependent Deformation of Rock Joints
    Mingzheng Wang
    Ming Cai
    Rock Mechanics and Rock Engineering, 2021, 54 : 1779 - 1797