Breaking the strength-ductility trade-off in additively manufactured aluminum alloys through grain structure control by duplex nucleation

被引:16
|
作者
Zhang, Jinliang [1 ]
Gao, Jianbao [2 ]
Yang, Shenglan [2 ]
Song, Bo [1 ]
Zhang, Lijun [2 ]
Lu, Jian [3 ]
Shi, Yusheng [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Mat Sci & Engn, State Key Lab Mat Proc & Die & Mould Technol, Wuhan 430074, Peoples R China
[2] Cent South Univ, State Key Lab Powder Met, Changsha 410083, Peoples R China
[3] City Univ Hong Kong, Dept Mech Engn, Hong Kong, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Laser powder bed fusion; TiB 2-reinforced AlCuMgTi composite; Duplex effect; CALPHAD; Phase-field simulation; Mechanical properties; MICROSTRUCTURE; REFINEMENT; DESIGN; NANOCOMPOSITES; MECHANISMS; PHASE;
D O I
10.1016/j.jmst.2022.12.030
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Achieving a homogeneous equiaxed grain structure and breaking the strength-ductility trade-off in ad-ditively manufactured aluminum alloys is a great challenge. In this paper, we propose a novel duplex nucleation mechanism that combines ex situ TiB2 and in situ Al3Ti for controlling the grain structure of additively manufactured AlCuMgTi-TiB2 composites. We conducted thermodynamic calculations and phase-field simulations to elucidate the duplex nucleation-based grain structure control. The Al3Ti-coated TiB2 inoculant system formed via duplex nucleation during solidification enabled the formation of a ho-mogeneous ultrafine equiaxed microstructure in both the as-fabricated and heat-treated states. Different from the AlCuMgTi alloy, the TiB2-reinforced AlCuMgTi composites produced via laser powder bed fusion were amenable to the simultaneous enhancement of strength and ductility. The proposed alloy design ap-proach and duplex nucleation mechanism can guide the tailoring of the microstructure and mechanical properties of additively manufactured aluminum parts. (c) 2023 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.
引用
收藏
页码:201 / 211
页数:11
相关论文
共 50 条
  • [2] Additive manufactured steel breaks strength-ductility trade-off
    Sealy, Cordelia
    MATERIALS TODAY, 2018, 21 (04) : 321 - 322
  • [3] Effect of Coherent Nanoprecipitate on Strain Hardening of Al Alloys: Breaking through the Strength-Ductility Trade-Off
    Wu, Pan
    Song, Kexing
    Liu, Feng
    MATERIALS, 2024, 17 (17)
  • [4] Breaking the high-temperature strength-ductility trade-off in TiAl alloys through microstructural optimization
    Zheng, Guoming
    Tang, Bin
    Zhao, Songkuan
    Wang, Jun
    Xie, Yizhen
    Chen, Xiaofei
    Wang, William Yi
    Liu, Dong
    Yang, Rui
    Li, Jinshan
    INTERNATIONAL JOURNAL OF PLASTICITY, 2023, 170
  • [5] Genetic design of new aluminum alloys to overcome strength-ductility trade-off dilemma
    Lee, Keunwon
    Song, Yongwook
    Kim, Sehoon
    Kim, Minsang
    Seol, Jaebok
    Cho, Kisub
    Choi, Hyunjoo
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 947
  • [6] Overcoming the strength-ductility trade-off in additively manufactured AlSi10Mg alloy by ECAP processing
    Snopiński, P.
    Matus, K.
    Tatiček, F.
    Rusz, S.
    Journal of Alloys and Compounds, 2022, 918
  • [7] Overcoming the strength-ductility trade-off in additively manufactured AlSi10Mg alloy by ECAP processing
    Snopinski, P.
    Matus, K.
    Taticek, F.
    Rusz, S.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 918
  • [8] Ordered nitrogen complexes overcoming strength-ductility trade-off in an additively manufactured high-entropy alloy
    Zhao, Dandan
    Yang, Quan
    Wang, Dawei
    Yan, Ming
    Wang, Pei
    Jiang, Mingguang
    Liu, Changyong
    Diao, Dongfeng
    Lao, Changshi
    Chen, Zhangwei
    Liu, Zhiyuan
    Wu, Yuan
    Lu, Zhaoping
    VIRTUAL AND PHYSICAL PROTOTYPING, 2020, 15 (15) : 532 - 542
  • [9] Dislocation network in additive manufactured steel breaks strength-ductility trade-off
    Liu, Leifeng
    Ding, Qingqing
    Zhong, Yuan
    Zou, Ji
    Wu, Jing
    Chiu, Yu-Lung
    Li, Jixue
    Zhang, Ze
    Yu, Qian
    Shen, Zhijian
    MATERIALS TODAY, 2018, 21 (04) : 354 - 361
  • [10] Overcoming the strength-ductility trade-off in an additively manufactured CoCrFeMnNi high entropy alloy via deep cryogenic treatment
    Li, H. G.
    Huang, Y. J.
    Zhao, W. J.
    Chen, T.
    Sun, J. F.
    Wei, D. Q.
    Du, Q.
    Zou, Y. C.
    Lu, Y. Z.
    Zhu, P.
    Lu, X.
    Ngan, A. H. W.
    ADDITIVE MANUFACTURING, 2022, 50