A review of machine learning state-of-charge and state-of-health estimation algorithms for lithium-ion batteries

被引:57
|
作者
Ren, Zhong
Du, Changqing [1 ]
机构
[1] Wuhan Univ Technol, Hubei Key Lab Adv Technol Automot Components, Wuhan 430070, Peoples R China
关键词
Lithium-ion batteries; Machine learning techniques; State-of-charge; State-of-health; RECURRENT NEURAL-NETWORK; MANAGEMENT-SYSTEM; ONLINE STATE; PREDICTION; MODEL; REGRESSION; CAPACITY; PROGNOSTICS; UNIT;
D O I
10.1016/j.egyr.2023.01.108
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Vehicle electrification has been proven to be an efficient way to reduce carbon dioxide emissions and solve the energy crisis. Lithium-ion batteries (LiBs) are considered the dominant energy storage medium for electric vehicles (EVs) owing to their high energy density and long lifespan. To maintain a safe, efficient, and stable operating condition for the battery system, we must monitor the state of the battery, especially the state-of-charge (SOC) and state-of-health (SOH). With the development of big data, cloud computing, and other emerging techniques, data-driven machine learning (ML) techniques have attracted attention for their enormous potential in state estimation for LiBs. Therefore, this paper reviews the four most studied types of ML algorithms for SOC and SOH estimation, including shallow neural network (NN), deep learning (DL), support vector machine (SVM), and Gaussian process regression (GPR) methods. The basic principles and uniform flowcharts of different ML algorithms are introduced. Then, the applications of each ML algorithm for state estimation within recent years are comprehensively reviewed and compared in terms of used datasets, input features, hyperparameter selection, performance metrics, advantages, and disadvantages. Based on the investigation, this review discusses the current challenges and prospects from four aspects, aiming to provide some inspiration for developing advanced ML state estimation algorithms.@2023 The Authors Publised by Elsevier ltd This is an open access article under the CC BY license
引用
收藏
页码:2993 / 3021
页数:29
相关论文
共 50 条
  • [1] Implementation of State-of-Charge and State-of-Health Estimation for Lithium-Ion Batteries
    Lin, Chang-Hua
    Wang, Chien-Ming
    Ho, Chien-Yeh
    PROCEEDINGS OF THE IECON 2016 - 42ND ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2016, : 4790 - 4795
  • [2] State-of-Charge Estimation with State-of-Health Calibration for Lithium-Ion Batteries
    Wu, Tsung-Hsi
    Moo, Chin-Sien
    ENERGIES, 2017, 10 (07):
  • [3] State-of-Charge and State-of-Health Estimating Method for Lithium-Ion Batteries
    Wu, Tsung-Hsi
    Wang, Jhih-Kai
    Moo, Chin-Sien
    Kawamura, Atsuo
    2016 IEEE 17TH WORKSHOP ON CONTROL AND MODELING FOR POWER ELECTRONICS (COMPEL), 2016,
  • [4] State-of-charge and state-of-health estimation for lithium-ion batteries based on dynamic impedance technique
    Hung, Min-Hsuan
    Lin, Chang-Hua
    Lee, Liang-Cheng
    Wang, Chien-Ming
    JOURNAL OF POWER SOURCES, 2014, 268 : 861 - 873
  • [5] State-of-Charge Balancing of Lithium-Ion Batteries With State-of-Health Awareness Capability
    Xia, Zhiyong
    Abu Qahouq, Jaber A.
    IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2021, 57 (01) : 673 - 684
  • [6] Co-Estimation of State-of-Charge and State-of-Health for High-Capacity Lithium-Ion Batteries
    Xiong, Ran
    Wang, Shunli
    Feng, Fei
    Yu, Chunmei
    Fan, Yongcun
    Cao, Wen
    Fernandez, Carlos
    BATTERIES-BASEL, 2023, 9 (10):
  • [7] Co-Estimation of State-of-Charge and State-of-Health for Lithium-Ion Batteries Considering Temperature and Ageing
    Lai, Xin
    Yuan, Ming
    Tang, Xiaopeng
    Yao, Yi
    Weng, Jiahui
    Gao, Furong
    Ma, Weiguo
    Zheng, Yuejiu
    ENERGIES, 2022, 15 (19)
  • [8] Coupling Effect of State-of-Health and State-of-Charge on the Mechanical Integrity of Lithium-Ion Batteries
    J. Xu
    Y. Jia
    B. Liu
    H. Zhao
    H. Yu
    J. Li
    S. Yin
    Experimental Mechanics, 2018, 58 : 633 - 643
  • [9] Enhanced state-of-charge and state-of-health estimation of lithium-ion battery incorporating machine learning and swarm intelligence algorithm
    Wang, Chengchao
    Su, Yingying
    Ye, Jinlu
    Xu, Peihang
    Xu, Enyong
    Ouyang, Tiancheng
    JOURNAL OF ENERGY STORAGE, 2024, 83
  • [10] Coupling Effect of State-of-Health and State-of-Charge on the Mechanical Integrity of Lithium-Ion Batteries
    Xu, J.
    Jia, Y.
    Liu, B.
    Zhao, H.
    Yu, H.
    Li, J.
    Yin, S.
    EXPERIMENTAL MECHANICS, 2018, 58 (04) : 633 - 643