OPTIMAL DIAMETER ESTIMATE OF THREE-DIMENSIONAL RICCI LIMIT SPACES

被引:3
|
作者
Zhu, Bo [1 ]
Zhu, Xingyu [2 ]
机构
[1] Texas A&M Univ, Dept Math, Blocker Bldg,3368 TAMU,155 Ireland St, College Stn, TX 77840 USA
[2] Univ Bonn, Inst Appl Math, Endenicher Allee 60, D-53115 Bonn, Germany
关键词
Positive scalar curvature; Ricci limit spaces; optimal diameter esti-mate; Ricci flow; CURVATURE; MANIFOLDS; RIGIDITY; FLOW;
D O I
10.1090/proc/16529
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note, we prove that positive scalar curvature can pass to three dimensional Ricci limit spaces of non-negative Ricci curvature when it splits off a line. As a corollary, we obtain an optimal Bonnet-Myers type upper bound. Moreover, we obtain a similar statement in all dimensions for Alexandrov spaces of non-negative curvature.
引用
收藏
页码:815 / 821
页数:7
相关论文
共 50 条
  • [1] Ricci solitons of three-dimensional Bianchi–Cartan–Vranceanu spaces
    W. Batat
    T. Šukilović
    S. Vukmirović
    Journal of Geometry, 2020, 111
  • [2] Three-Dimensional Alexandrov Spaces with Positive or Nonnegative Ricci Curvature
    Qintao Deng
    Fernando Galaz-García
    Luis Guijarro
    Michael Munn
    Potential Analysis, 2018, 48 : 223 - 238
  • [3] Three-Dimensional Alexandrov Spaces with Positive or Nonnegative Ricci Curvature
    Deng, Qintao
    Galaz-Garcia, Fernando
    Guijarro, Luis
    Munn, Michael
    POTENTIAL ANALYSIS, 2018, 48 (02) : 223 - 238
  • [4] ON LOW-DIMENSIONAL RICCI LIMIT SPACES
    Honda, Shouhei
    NAGOYA MATHEMATICAL JOURNAL, 2013, 209 : 1 - 22
  • [5] Ricci solitons of three-dimensional Bianchi-Cartan-Vranceanu spaces
    Batat, W.
    Sukilovic, T.
    Vukmirovic, S.
    JOURNAL OF GEOMETRY, 2020, 111 (01)
  • [6] Ricci Flow and Ricci Limit Spaces
    Topping, Peter M.
    GEOMETRIC ANALYSIS, 2020, 2263 : 79 - 112
  • [7] A class of three-dimensional Ricci solitons
    Baird, Paul
    GEOMETRY & TOPOLOGY, 2009, 13 : 979 - 1015
  • [8] Singularities of Three-Dimensional Ricci Flows
    Sinestrari, Carlo
    RICCI FLOW AND GEOMETRIC APPLICATIONS, 2016, 2166 : 71 - 104
  • [9] An optimal deterministic algorithm for computing the diameter of a three-dimensional point set
    Ramos, EA
    DISCRETE & COMPUTATIONAL GEOMETRY, 2001, 26 (02) : 233 - 244
  • [10] An Optimal Deterministic Algorithm for Computing the Diameter of a Three-Dimensional Point Set
    E. A. Ramos
    Discrete & Computational Geometry, 2001, 26 : 233 - 244