On the effect of particle update modes in particle swarm optimisation

被引:0
|
作者
Dong, Nanjiang [1 ]
Wang, Rui [1 ]
Zhang, Tao [1 ]
Ou, Junwei [1 ]
机构
[1] Natl Univ Def Technol, Coll Syst Engn, Changsha, Peoples R China
基金
中国国家自然科学基金;
关键词
evolutionary computation; particle swarm optimisation; PSO; population size; multi-objective optimisation; DISTANCE;
D O I
10.1504/IJBIC.2023.132784
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Particle swarm optimisation has been successfully applied in various single- and multi-objective optimisation problems. Through the literature review, it is shown that in PSO-based algorithms particles are updated mainly in two different modes. Specifically, the first mode denoted as PSO-a uses random vectors in [0, 1](n) in the particle update process. The second mode denoted as PSO-b uses random variables in [0, 1]. This study systematically analysed the effect of different modes on a varied set of benchmarks. Experimental results show that the PSO-a mode is more suitable for single-objective optimisation while the PSO-b has certain advantages for multi-objective optimisation due to the regularity of multi-objective problems. Also, the introduction of a mutation operator into PSO-b can overcome the limit of dimension. Moreover, to guarantee finding the optimal solution, the swarm size must be larger than the problem dimensionality when PSO-b is purely adopted.
引用
收藏
页码:230 / 239
页数:11
相关论文
共 50 条
  • [1] Evolving the update strategy of the Particle Swarm Optimisation algorithms
    Diosan, Laura
    Oltean, Mihai
    INTERNATIONAL JOURNAL ON ARTIFICIAL INTELLIGENCE TOOLS, 2007, 16 (01) : 87 - 109
  • [2] Particle swarm optimisation with spatial particle extension
    Krink, T
    Vesterstrom, JS
    Riget, J
    CEC'02: PROCEEDINGS OF THE 2002 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1 AND 2, 2002, : 1474 - 1479
  • [3] Perceptive particle swarm optimisation
    Kaewkamnerdpong, B
    Bentley, PJ
    ADAPTIVE AND NATURAL COMPUTING ALGORITHMS, 2005, : 259 - 263
  • [4] Boid particle swarm optimisation
    Cui, Zhihua
    Shi, Zhongzhi
    International Journal of Innovative Computing and Applications, 2009, 2 (02) : 78 - 85
  • [5] Geometric particle swarm optimisation
    Moraglio, Alberto
    Di Chio, Cecilia
    Poli, Riccardo
    GENETIC PROGRAMMING, PROCEEDINGS, 2007, 4445 : 125 - +
  • [6] On the Scalability of Particle Swarm Optimisation
    Piccand, Sebastien
    O'Neill, Michael
    Walker, Jacqueline
    2008 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-8, 2008, : 2505 - +
  • [7] Particle swarm optimisation particle filtering for dual estimation
    Yang, X.
    IET SIGNAL PROCESSING, 2012, 6 (02) : 114 - 121
  • [8] A meta optimisation analysis of particle swarm optimisation velocity update equations for watershed management learning
    Mason, Karl
    Duggan, Jim
    Howley, Enda
    APPLIED SOFT COMPUTING, 2018, 62 : 148 - 161
  • [9] Stochastic stability of particle swarm optimisation
    Adam Erskine
    Thomas Joyce
    J. Michael Herrmann
    Swarm Intelligence, 2017, 11 : 295 - 315
  • [10] CriPS: Critical Particle Swarm Optimisation
    Erskine, Adam
    Herrmann, J. Michael
    ECAL 2015: THE THIRTEENTH EUROPEAN CONFERENCE ON ARTIFICIAL LIFE, 2015, : 207 - 214