Exploring the mechanisms of magnolol in the treatment of periodontitis by integrating network pharmacology and molecular docking

被引:2
|
作者
Chen, Der-Jeu [1 ]
Lai, Cheng-Hung [1 ]
机构
[1] Natl Chung Hsing Univ, Dept Vet Med, Taichung, Taiwan
关键词
Magnolol; Periodontitis; Network pharmacology; Molecular docking; OXIDATIVE STRESS; INFLAMMATION; HONOKIOL; LIPOPOLYSACCHARIDE; DISEASE; RATS;
D O I
10.32604/biocell.2023.028883
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: Magnolol, a bioactive extract of the Chinese herb Magnolia officinalis has a protective effect against periodontitis. This study is aimed to explore the mechanisms involved in the functioning of magnolol against periodontitis and provide a basis for further research. Methods: Network pharmacology analysis was performed based on the identification of related targets from public databases. The Protein-protein interaction (PPI) network was constructed to visualize the significance between the targets of magnolol and periodontitis. Subsequently, Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed to predict the functions and the signal regulatory pathways involved in the action of magnolol against periodontitis. The "functiontarget-pathway" networks were constructed to analyze the core targets and pathways of magnolol against periodontitis. Molecular docking was used to verify the interaction of magnolol and core targets. Results: A total of 58 active targets of magnolol and 644 periodontitis-related targets were collected from public databases. A total of 25 targets of magnolol against periodontitis were identified based on the Venn diagram. GO analysis showed that magnolol has a role in the response to oxidative stress, nicotine, and lipopolysaccharide. KEGG enrichment analysis indicated that the mechanism of magnolol against periodontitis was mainly related to the tumor necrosis factor (TNF), phosphoinositide 3-kinase (PI3K/Akt), and mitogen-activated protein kinase (MAPK) signaling pathways. Combined with PPI network and molecular docking results, the core targets of magnolol against periodontitis included AKT1, MAPK8, MAPK14, TNF, and TP53. Conclusion: To summarize, the anti-periodontitis mechanisms of magnolol are potentially through regulating the TNF, PI3K/Akt, and MAPK signaling pathways.
引用
收藏
页码:1317 / 1327
页数:11
相关论文
共 50 条
  • [1] Exploring the Molecular Mechanisms of Herbs in the Treatment of Hyperlipidemia Based on Network Pharmacology and Molecular Docking
    Cheng, Xiao
    Sun, Geng
    Meng, Li
    Liu, Yueli
    Wen, Jiangnan
    Zhao, Xiaoli
    Cai, Wenhui
    Xin, Huawei
    Liu, Yu
    Hao, Chunxiang
    JOURNAL OF MEDICINAL FOOD, 2024,
  • [2] Exploring the mechanisms of action of Cordyceps sinensis for the treatment of depression using network pharmacology and molecular docking
    Zhang, Xingfang
    Wang, Mengyuan
    Qiao, Yajun
    Shan, Zhongshu
    Yang, Mengmeng
    Li, Guoqiang
    Xiao, Yuancan
    Wei, Lixin
    Bi, Hongtao
    Gao, Tingting
    ANNALS OF TRANSLATIONAL MEDICINE, 2022, 10 (06)
  • [3] Exploring the Targets and Molecular Mechanisms of Curcumin for the Treatment of Bladder Cancer Based on Network Pharmacology, Molecular Docking and Molecular Dynamics
    Li, Jun
    Feng, Shujie
    Wang, Xiong
    Zhang, Bingmei
    He, Qingmin
    MOLECULAR BIOTECHNOLOGY, 2024,
  • [4] Exploring the mechanisms of neurotoxicity caused by fuzi using network pharmacology and molecular docking
    An, Junsha
    Fan, Huali
    Han, Mingyu
    Peng, Cheng
    Xie, Jie
    Peng, Fu
    FRONTIERS IN PHARMACOLOGY, 2022, 13
  • [5] Exploring the Potential Antidepressant Mechanisms of Pinellia by Using the Network Pharmacology and Molecular Docking
    Xiao, Yu-Gang
    Wu, Han-Biao
    Chen, Ji-Sheng
    Li, Xiong
    Qiu, Zhi-Kun
    METABOLIC BRAIN DISEASE, 2022, 37 (04) : 1071 - 1094
  • [6] Exploring the Potential Antidepressant Mechanisms of Pinellia by Using the Network Pharmacology and Molecular Docking
    Yu-Gang Xiao
    Han-Biao Wu
    Ji-Sheng Chen
    Xiong Li
    Zhi-Kun Qiu
    Metabolic Brain Disease, 2022, 37 : 1071 - 1094
  • [7] Exploring Molecular Targets and Mechanisms of Apigenin in the Treatment of Papillary Thyroid Carcinoma Based on Network Pharmacology and Molecular Docking Analysis
    Li, Dongyu
    Wang, Lei
    Jing, Yuchen
    Jiang, Bo
    Zhao, Lei
    Miao, Yuxi
    Xin, Shijie
    Ge, Chunlin
    NATURAL PRODUCT COMMUNICATIONS, 2022, 17 (10)
  • [8] Exploring the mechanisms of Guizhifuling pills in the treatment of coronary spastic angina based on network pharmacology combined with molecular docking
    Xu, Shuaimin
    Cui, Weiqi
    Zhang, Xiangyu
    Song, Weijuan
    Wang, Yanhong
    Zhao, Yang
    MEDICINE, 2024, 103 (29) : e39014
  • [9] Molecular mechanisms of Biyu decoction as treatment for psoriasis: A network pharmacology and molecular docking study
    Zi Wang
    Hao-Min Zhang
    Yuan-Rui Guo
    Ling-Ling Li
    World Journal of Clinical Cases, 2022, (21) : 7224 - 7241
  • [10] Molecular mechanisms of Biyu decoction as treatment for psoriasis: A network pharmacology and molecular docking study
    Wang, Zi
    Zhang, Hao-Min
    Guo, Yuan-Rui
    Li, Ling-Ling
    WORLD JOURNAL OF CLINICAL CASES, 2022, 10 (21) : 7224 - 7241