Fine-Needle Aspiration Biopsy Evaluation-Oriented Thyroid Carcinoma Auxiliary Diagnosis

被引:5
|
作者
Zhuo, Yiyao [1 ]
Fang, Han [1 ]
Yuan, Jie [1 ,4 ]
Gong, Li [2 ,5 ]
Zhang, Yuchen [3 ]
机构
[1] Nanjing Univ, Sch Elect Sci & Engn, Nanjing, Peoples R China
[2] Nanjing Univ, Affiliated Drum Tower Hosp, Med Sch, Nanjing, Peoples R China
[3] Peking Univ, Sch Life Sci, Beijing, Peoples R China
[4] Nanjing Univ, Sch Elect Sci & Engn, 163 Xianlin Ave, Nanjing 210046, Jiangsu, Peoples R China
[5] Nanjing Univ, Affiliated Drum Tower Hosp, Med Sch, Nanjing 210023, Jiangsu, Peoples R China
来源
ULTRASOUND IN MEDICINE AND BIOLOGY | 2023年 / 49卷 / 05期
关键词
Convolutional neural network; Thyroid carcinoma; Ultrasound images; ULTRASOUND; NODULES;
D O I
10.1016/j.ultrasmedbio.2023.01.002
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Objective: Thyroid carcinoma is one of the most common diseases with an increasing incidence worldwide in recent years. In clinical diagnosis, medical practitioners normally take a preliminary thyroid nodule grading so that highly suspected thyroid nodules can be taken into the fine-needle aspiration (FNA) biopsy to evaluate the malignancy. However, subjective misinterpretations might lead to ambiguous risk stratification of thyroid nodules and unnecessary FNA biopsy.Methods: We propose a thyroid carcinoma auxiliary diagnosis method for fine-needle aspiration biopsy evaluation. Through integration of several deep learning models into a multibranch network for thyroid nodule risk stratifica-tion in the Thyroid Imaging Reporting and Data System (TIRADS) with pathological features and cascading of a discriminator, our proposed method provides an intelligent auxiliary diagnosis to assist medical practitioners in determining the necessity for further FNA. Discussion: Experimental results revealed that not only was the rate at which nodules are falsely diagnosed as malignant nodules effectively reduced, which avoids the unnecessary high cost and pain of aspiration biopsy, but also previously missing detected cases were identified with high possibility. By comparing the physicians' diagno-sis alone with machine-assisted diagnosis, physicians' diagnostic performance improved with the aid of our pro-posed method, illustrating that our model can be very helpful in clinical practice.Conclusion: Our proposed method might help medical practitioners avoid subjective interpretations and inter -observer variability. For patients, reliable diagnosis is provided and unnecessary painful diagnostics can be avoided. In other superficial organs such as metastatic lymph nodes and salivary gland tumors, the proposed method might also provide a reliable auxiliary diagnosis for risk stratification.
引用
收藏
页码:1173 / 1181
页数:9
相关论文
共 50 条