scGCL: an imputation method for scRNA-seq data based on graph contrastive learning

被引:17
|
作者
Xiong, Zehao [1 ]
Luo, Jiawei [1 ]
Shi, Wanwan [1 ]
Liu, Ying [1 ]
Xu, Zhongyuan [1 ]
Wang, Bo [1 ]
机构
[1] Hunan Univ, Coll Comp Sci & Elect Engn, Changsha 410083, Peoples R China
关键词
CELL; ATLAS; CORTEX;
D O I
10.1093/bioinformatics/btad098
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Single-cell RNA-sequencing (scRNA-seq) is widely used to reveal cellular heterogeneity, complex disease mechanisms and cell differentiation processes. Due to high sparsity and complex gene expression patterns, scRNA-seq data present a large number of dropout events, affecting downstream tasks such as cell clustering and pseudo-time analysis. Restoring the expression levels of genes is essential for reducing technical noise and facilitating downstream analysis. However, existing scRNA-seq data imputation methods ignore the topological structure information of scRNA-seq data and cannot comprehensively utilize the relationships between cells.Results: Here, we propose a single-cell Graph Contrastive Learning method for scRNA-seq data imputation, named scGCL, which integrates graph contrastive learning and Zero-inflated Negative Binomial (ZINB) distribution to estimate dropout values. scGCL summarizes global and local semantic information through contrastive learning and selects positive samples to enhance the representation of target nodes. To capture the global probability distribution, scGCL introduces an autoencoder based on the ZINB distribution, which reconstructs the scRNA-seq data based on the prior distribution. Through extensive experiments, we verify that scGCL outperforms existing state-of-the-art imputation methods in clustering performance and gene imputation on 14 scRNA-seq datasets. Further, we find that scGCL can enhance the expression patterns of specific genes in Alzheimer's disease datasets.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Graph contrastive learning as a versatile foundation for advanced scRNA-seq data analysis
    Zhang, Zhenhao
    Liu, Yuxi
    Xiao, Meichen
    Wang, Kun
    Huang, Yu
    Bian, Jiang
    Yang, Ruolin
    Li, Fuyi
    BRIEFINGS IN BIOINFORMATICS, 2024, 25 (06)
  • [2] FRMC: a fast and robust method for the imputation of scRNA-seq data
    Wu, Honglong
    Wang, Xuebin
    Chu, Mengtian
    Xiang, Ruizhi
    Zhou, Ke
    RNA BIOLOGY, 2021, 18 : 172 - 181
  • [3] Deep enhanced constraint clustering based on contrastive learning for scRNA-seq data
    Gan, Yanglan
    Chen, Yuhan
    Xu, Guangwei
    Guo, Wenjing
    Zou, Guobing
    BRIEFINGS IN BIOINFORMATICS, 2023, 24 (04)
  • [4] An efficient scRNA-seq dropout imputation method using graph attention network
    Chenyang Xu
    Lei Cai
    Jingyang Gao
    BMC Bioinformatics, 22
  • [5] An efficient scRNA-seq dropout imputation method using graph attention network
    Xu, Chenyang
    Cai, Lei
    Gao, Jingyang
    BMC BIOINFORMATICS, 2021, 22 (01)
  • [6] scGCC: Graph Contrastive Clustering With Neighborhood Augmentations for scRNA-Seq Data Analysis
    Tian, Sheng-Wen
    Ni, Jian-Cheng
    Wang, Yu-Tian
    Zheng, Chun-Hou
    Ji, Cun-Mei
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2023, 27 (12) : 6133 - 6143
  • [7] scZAG: Integrating ZINB-Based Autoencoder with Adaptive Data Augmentation Graph Contrastive Learning for scRNA-seq Clustering
    Zhang, Tianjiao
    Ren, Jixiang
    Li, Liangyu
    Wu, Zhenao
    Zhang, Ziheng
    Dong, Guanghui
    Wang, Guohua
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (11)
  • [8] Multi-View Clustering With Graph Learning for scRNA-Seq Data
    Wu, Wenming
    Zhang, Wensheng
    Hou, Weimin
    Ma, Xiaoke
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2023, 20 (06) : 3535 - 3546
  • [9] Contrastive self-supervised clustering of scRNA-seq data
    Ciortan, Madalina
    Defrance, Matthieu
    BMC BIOINFORMATICS, 2021, 22 (01)
  • [10] Contrastive self-supervised clustering of scRNA-seq data
    Madalina Ciortan
    Matthieu Defrance
    BMC Bioinformatics, 22