Three-Dimensional Printing of Drug-Eluting Implantable PLGA Scaffolds for Bone Regeneration

被引:1
|
作者
Annaji, Manjusha [1 ]
Mita, Nur [1 ,2 ]
Poudel, Ishwor [1 ]
Boddu, Sai H. S. [3 ,4 ]
Fasina, Oladiran [5 ]
Babu, R. Jayachandra [1 ]
机构
[1] Auburn Univ, Harrison Coll Pharm, Dept Drug Discovery & Dev, Auburn, AL 36849 USA
[2] Mulawarman Univ, Fac Pharm, Samarinda 75119, Kalimantan Timu, Indonesia
[3] Ajman Univ, Coll Pharm & Hlth Sci, Dept Pharmaceut Sci, POB 346, Ajman, U Arab Emirates
[4] Ajman Univ, Ctr Med & Bioallied Hlth Sci Res, POB 346, Ajman, U Arab Emirates
[5] Auburn Univ, Samuel Ginn Coll Engn, Dept Biosyst Engn, Auburn, AL 36849 USA
来源
BIOENGINEERING-BASEL | 2024年 / 11卷 / 03期
关键词
3D printing; ketoprofen; PLGA scaffolds; sustained release; thermoplastic extrusion;
D O I
10.3390/bioengineering11030259
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Despite rapid progress in tissue engineering, the repair and regeneration of bone defects remains challenging, especially for non-homogenous and complicated defects. We have developed and characterized biodegradable drug-eluting scaffolds for bone regeneration utilizing direct powder extrusion-based three-dimensional (3D) printing techniques. The PLGA scaffolds were fabricated using poly (lactic-co-glycolic acid) (PLGA) with inherent viscosities of 0.2 dl/g and 0.4 dl/g and ketoprofen. The effect of parameters such as the infill, geometry, and wall thickness of the drug carrier on the release kinetics of ketoprofen was studied. The release studies revealed that infill density significantly impacts the release performance, where 10% infill showed faster and almost complete release of the drug, whereas 50% infill demonstrated a sustained release. The Korsmeyer-Peppas model showed the best fit for release data irrespective of the PLGA molecular weight and infill density. It was demonstrated that printing parameters such as infill density, scaffold wall thickness, and geometry played an important role in controlling the release and, therefore, in designing customized drug-eluting scaffolds for bone regeneration.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Drug-eluting scaffolds for bone and cartilage regeneration
    Huang, Charlotte L.
    Lee, Wei Li
    Loo, Joachim S. C.
    DRUG DISCOVERY TODAY, 2014, 19 (06) : 714 - 724
  • [2] Three-Dimensional Printing of Drug-Eluting Implants: Preparation of an Antimicrobial Polylactide Feedstock Material
    Water, Jorrit Jeroen
    Bohr, Adam
    Boetker, Johan
    Aho, Johanna
    Sandler, Niklas
    Nielsen, Hanne Morck
    Rantanen, Jukka
    JOURNAL OF PHARMACEUTICAL SCIENCES, 2015, 104 (03) : 1099 - 1107
  • [3] Three-Dimensional Printing of Hollow-Struts-Packed Bioceramic Scaffolds for Bone Regeneration
    Luo, Yongxiang
    Zhai, Dong
    Huan, Zhiguang
    Zhu, Haibo
    Xia, Lunguo
    Chang, Jiang
    Wu, Chengtie
    ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (43) : 24377 - 24383
  • [4] Three-Dimensional Printing of Soy Protein Scaffolds for Tissue Regeneration
    Chien, Karen B.
    Makridakis, Emmanuella
    Shah, Ramille N.
    TISSUE ENGINEERING PART C-METHODS, 2013, 19 (06) : 417 - 426
  • [5] Three-Dimensional Printing of Nanomaterial Scaffolds for Complex Tissue Regeneration
    O'Brien, Christopher M.
    Holmes, Benjamin
    Faucett, Scott
    Zhang, Lijie Grace
    TISSUE ENGINEERING PART B-REVIEWS, 2015, 21 (01) : 103 - 114
  • [6] Three-dimensional printing of tricalcium silicate/mesoporous bioactive glass cement scaffolds for bone regeneration
    Pei, Peng
    Qi, Xin
    Du, Xiaoyu
    Zhu, Min
    Zhao, Shichang
    Zhu, Yufang
    JOURNAL OF MATERIALS CHEMISTRY B, 2016, 4 (46) : 7452 - 7463
  • [7] Three-dimensional printing of strontium-containing mesoporous bioactive glass scaffolds for bone regeneration
    Zhang, Jianhua
    Zhao, Shichang
    Zhu, Yufang
    Huang, Yinjun
    Zhu, Min
    Tao, Cuilian
    Zhang, Changqing
    ACTA BIOMATERIALIA, 2014, 10 (05) : 2269 - 2281
  • [8] Three-Dimensional Printing Bioceramic Scaffolds Using Direct-Ink-Writing for Craniomaxillofacial Bone Regeneration
    Nayak, Vasudev Vivekanand
    Slavin, Blaire V.
    Bergamo, Edmara T. P.
    Torroni, Andrea
    Runyan, Christopher M.
    Flores, Roberto L.
    Kasper, F. Kurtis
    Young, Simon
    Coelho, Paulo G.
    Witek, Lukasz
    TISSUE ENGINEERING PART C-METHODS, 2023, 29 (07) : 332 - 345
  • [9] Three-Dimensional Scaffolds of Carbonized Polyacrylonitrile for Bone Tissue Regeneration
    Ryu, Seungmi
    Lee, Choonghyeon
    Park, Jooyeon
    Lee, Jun Seop
    Kang, Seokyung
    Seo, Young Deok
    Jang, Jyongsik
    Kim, Byung-Soo
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2014, 53 (35) : 9213 - 9217
  • [10] Three-Dimensional Printing of Bone Extracellular Matrix for Craniofacial Regeneration
    Hung, Ben P.
    Naved, Bilal A.
    Nyberg, Ethan L.
    Dias, Miguel
    Holmes, Christina A.
    Elisseeff, Jennifer H.
    Dorafshar, Amir H.
    Grayson, Warren L.
    ACS BIOMATERIALS SCIENCE & ENGINEERING, 2016, 2 (10): : 1806 - 1816