Some exact and approximate solutions to a generalized Maxwell-Cattaneo equation

被引:2
|
作者
Herron, Isom H. [1 ]
Mickens, Ronald E. [2 ]
机构
[1] Rensselaer Polytech Inst, Dept Math Sci, Troy, NY 12180 USA
[2] Clark Atlanta Univ, Dept Phys, Atlanta, GA USA
关键词
approximate solutions; exact solutions; heat conduction PDEs; Maxwell-Cattaneo equation; nonlinear PDE; qualitative methods for ODEs; HEAT;
D O I
10.1111/sapm.12640
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The simple heat conduction equation in one-space dimension does not have the property of a finite speed for information transfer. A partial resolution of this difficulty can be obtained within the context of heat conduction by the introduction of a partial differential equation (PDE) called the Maxwell-Cattaneo (M-C) equation, elsewhere called the damped wave equation, a special case of the telegraph equation. We construct a generalization to the M-C equation by allowing the relaxation time parameter to be a function of temperature. In the balance of the paper, we present a variety of special exact and approximate solutions to this nonlinear PDE.
引用
收藏
页码:1550 / 1568
页数:19
相关论文
共 50 条
  • [1] Continuous dependence on spatial geometry for the generalized Maxwell-Cattaneo system
    Lin, CH
    Payne, LE
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2001, 24 (14) : 1113 - 1124
  • [2] Robustness of the nonequilibrium entropy related to the Maxwell-Cattaneo heat equation
    Alvarez, F. X.
    Casas-Vazquez, J.
    Jou, D.
    PHYSICAL REVIEW E, 2008, 77 (03):
  • [3] The convective instability of a Maxwell-Cattaneo fluid in the presence of a vertical magnetic field: Maxwell-Cattaneo magnetoconvection
    Eltayeb, I.A.
    Hughes, D.W.
    Proctor, M.R.E.
    Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2020, 476 (2241):
  • [4] Modelling ultra-fast nanoparticle melting with the Maxwell-Cattaneo equation
    Hennessy, Matthew G.
    Calvo-Schwarzwalder, Marc
    Myers, Timothy G.
    APPLIED MATHEMATICAL MODELLING, 2019, 69 : 201 - 222
  • [5] A derivation of the Maxwell-Cattaneo equation from the free energy and dissipation potentials
    Ostoja-Starzewski, Martin
    INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2009, 47 (7-8) : 807 - 810
  • [6] Rapidly rotating Maxwell-Cattaneo convection
    Hughes, D. W.
    Proctor, M. R. E.
    Eltayeb, I. A.
    PHYSICAL REVIEW FLUIDS, 2022, 7 (09)
  • [7] LAGRANGIAN FORMULATION OF THE MAXWELL-CATTANEO HYDRODYNAMICS
    GRMELA, M
    TEICHMANN, J
    INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 1983, 21 (04) : 297 - 313
  • [8] Shock waves: The Maxwell-Cattaneo case
    Uribe, F. J.
    PHYSICAL REVIEW E, 2016, 93 (03)
  • [9] Convective instabilities of Maxwell-Cattaneo fluids
    Eltayeb, I. A.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2017, 473 (2201):
  • [10] Continuous dependence of heat flux on spatial geometry for the generalized Maxwell-Cattaneo system
    Lin, CH
    Payne, LE
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2004, 55 (04): : 575 - 591