Light scalar explanation for the 18 TeV GRB 221009A

被引:9
|
作者
Balaji, Shyam [1 ,2 ,3 ,4 ]
Ramirez-Quezada, Maura E. [5 ,6 ]
Silk, Joseph [3 ,4 ]
Zhang, Yongchao [7 ]
机构
[1] CNRS, Lab Phys Theor & Hautes Energies LPTHE, UMR 7589, 4 Pl Jussieu, F-75252 Paris, France
[2] Sorbonne Univ, 4 Pl Jussieu, F-75252 Paris, France
[3] CNRS, Inst Astrophys Paris, UMR 7095, 98 Bis Blvd Arago, F-75014 Paris, France
[4] Sorbonne Univ, 98 Bis Blvd Arago, F-75014 Paris, France
[5] Univ Tokyo, Dept Phys, Bunkyo Ku, Tokyo 1130033, Japan
[6] Dual CP Inst High Energy Phys, Colima 28045, Mexico
[7] Southeast Univ, Sch Phys, Nanjing, Peoples R China
基金
欧盟地平线“2020”; 中国国家自然科学基金;
关键词
ELECTROWEAK PHASE-TRANSITION; STANDARD MODEL; CONSTRAINTS;
D O I
10.1103/PhysRevD.107.083038
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The recent astrophysical transient Swift J1913.1 thorn 1946 may be associated with the ?-ray burst GRB 221009A. The redshift of this event is z ? 0.151. Very high-energy ? rays (up to 18 TeV) followed the transient and were observed by the Large High Altitude Air Shower Observatory (LHAASO); additionally, Carpet-2 detected a photonlike air shower of 251 TeV. Photons of such high energy are expected to readily annihilate with the diffuse extragalactic background light (EBL) before reaching Earth. If the ?-ray identification and redshift measurements are correct, new physics could be necessary to explain these measurements. This paper provides the first CP-even scalar explanation of the most energetic 18 TeV event reported by LHAASO. In this minimal scenario, the light scalar singlet S mixes with the Standard Model Higgs boson h. The highly boosted S particles are produced in the GRB and then undergo the radiative decay diphoton S ? ?? while propagating to Earth. The resulting photons may thus be produced at a remote region without being nullified by the EBL. Hence, the usual exponential reduction of ? rays is lifted due to an attenuation that is inverse in the optical depth, which becomes much larger due to the scalar carriers.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Deciphering the ∼18 TeV Photons from GRB 221009A
    Sahu, Sarira
    Medina-Carrillo, B.
    Sanchez-Colon, G.
    Rajpoot, Subhash
    ASTROPHYSICAL JOURNAL LETTERS, 2023, 942 (02)
  • [2] Determining the viewing angle from TeV light curve of GRB 221009A
    Zhou, Lin
    Zou, Yuan-Chuan
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2024, 532 (02) : 2189 - 2195
  • [3] Jitter Mechanism as a Kind of Coherent Radiation: Constrained by the GRB 221009A Emission at 18 TeV
    Mao, Jirong
    Wang, Jiancheng
    ASTROPHYSICAL JOURNAL, 2023, 946 (02):
  • [4] Light speed variation from GRB 221009A
    Zhu, Jie
    Ma, Bo-Qiang
    JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 2023, 50 (06)
  • [5] GRB 221009A: The BOAT
    Burns, Eric
    Svinkin, Dmitry
    Fenimore, Edward
    Kann, D. Alexander
    Aguei Fernandez, Jose Feliciano
    Frederiks, Dmitry
    Hamburg, Rachel
    Lesage, Stephen
    Temiraev, Yuri
    Tsvetkova, Anastasia
    Bissaldi, Elisabetta
    Briggs, Michael S.
    Dalessi, Sarah
    Dunwoody, Rachel
    Fletcher, Cori
    Goldstein, Adam
    Hui, C. Michelle
    Hristov, Boyan A.
    Kocevski, Daniel
    Lysenko, Alexandra L.
    Mailyan, Bagrat
    Mangan, Joseph
    McBreen, Sheila
    Racusin, Judith
    Ridnaia, Anna
    Roberts, Oliver J.
    Ulanov, Mikhail
    Veres, Peter
    Wilson-Hodge, Colleen A.
    Wood, Joshua
    ASTROPHYSICAL JOURNAL LETTERS, 2023, 946 (01)
  • [6] Hybrid Emission Modeling of GRB 221009A: Shedding Light on TeV Emission Origins in Long GRBs
    Isravel, Hebzibha
    Begue, Damien
    Pe'er, Asaf
    ASTROPHYSICAL JOURNAL, 2023, 956 (01):
  • [7] Naked Forward Shock Seen in the TeV Afterglow Data of GRB 221009A
    Khangulyan, Dmitry
    Aharonian, Felix
    Taylor, Andrew M.
    ASTROPHYSICAL JOURNAL, 2024, 966 (01):
  • [8] Constraining the Jet Composition of GRB 221009A with the Prompt TeV Emission Limit
    Dai, Cui-Yuan
    Wang, Xiang-Yu
    Liu, Ruo-Yu
    Zhang, Bing
    ASTROPHYSICAL JOURNAL LETTERS, 2023, 957 (02)
  • [9] The IXPE View of GRB 221009A
    Negro, Michela
    Di Lalla, Niccolo
    Omodei, Nicola
    Veres, Peter
    Silvestri, Stefano
    Manfreda, Alberto
    Burns, Eric
    Baldini, Luca
    Costa, Enrico
    Ehlert, Steven R.
    Kennea, Jamie A.
    Liodakis, Ioannis
    Marshall, Herman L.
    Mereghetti, Sandro
    Middei, Riccardo
    Muleri, Fabio
    O'Dell, Stephen L.
    Roberts, Oliver J.
    Romani, Roger W.
    Sgro, Carmelo
    Terashima, Masanobu
    Tiengo, Andrea
    Viscolo, Domenico
    Di Marco, Alessandro
    La Monaca, Fabio
    Latronico, Luca
    Matt, Giorgio
    Perri, Matteo
    Puccetti, Simonetta
    Poutanen, Juri
    Ratheesh, Ajay
    Rogantini, Daniele
    Slane, Patrick
    Soffitta, Paolo
    Lindfors, Elina
    Nilsson, Kari
    Kasikov, Anni
    Marscher, Alan P.
    Tavecchio, Fabrizio
    Cibrario, Nicolo
    Gunji, Shuichi
    Malacaria, Christian
    Paggi, Alessandro
    Yang, Yi-Jung
    Zane, Silvia
    Weisskopf, Martin C.
    Agudo, Ivan
    Antonelli, Lucio A.
    Bachetti, Matteo
    Baumgartner, Wayne H.
    ASTROPHYSICAL JOURNAL LETTERS, 2023, 946 (01)
  • [10] Implication from GRB 221009A: Can TeV emission come from the GRB prompt phase?
    Kai Wang
    Zhi-Peng Ma
    Ruo-Yu Liu
    Yuan-Chuan Zou
    Zhuo Li
    Zi-Gao Dai
    Science China Physics, Mechanics & Astronomy, 2023, 66