On the role of transverse motion in pseudo-steady gravity currents

被引:1
|
作者
Marshall, C. R. [1 ]
Dorrell, R. M. [2 ]
Keevil, G. M. [3 ]
Peakall, J. [3 ]
Tobias, S. M. [3 ]
机构
[1] Univ Leeds, EPSRC Ctr Doctoral Training Fluid Dynam, Leeds LS2 9JT, England
[2] Univ Hull, Kingston Upon Hull HU6 7RX, England
[3] Univ Leeds, Leeds LS2 9JT, England
基金
英国工程与自然科学研究理事会;
关键词
TURBIDITY CURRENTS; TURBULENCE STRUCTURE; DENSITY CURRENTS; VELOCITY STRUCTURE; ENTRAINMENT; FLOW; SEDIMENT; DRIVEN;
D O I
10.1007/s00348-023-03599-7
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Flow in the body of gravity currents is typically assumed to be statistically two-dimensional, and cross-stream flow is often neglected (Simpson 1997; Meiburg et al. 2015). Here, we assess the validity of such assumptions using Shake-the-Box particle tracking velocimetry measurements of experimental gravity current flows. The resulting instantaneous, volumetric, whole-field velocity measurements indicate that cross-stream and vertical velocities (and velocity fluctuations) are equivalent in magnitude and thus are key to energy distribution and dissipation within the flow. Further, the presented data highlight the limitations of basing conclusions regarding body structure on a single cross-stream plane (particularly if that plane is central). Spectral analysis and dynamic mode decomposition of the fully three-dimensional, volumetric velocity data suggests internal waves within the current body that are associated with coherent three-dimensional motions in higher Reynolds number flows. Additionally, a potential critical layer at the height of the downstream velocity maximum is identified.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] On the role of transverse motion in pseudo-steady gravity currents
    C. R. Marshall
    R. M. Dorrell
    G. M. Keevil
    J. Peakall
    S. M. Tobias
    Experiments in Fluids, 2023, 64
  • [2] PSEUDO-STEADY INDENTATION CREEP
    Takagi, Hidenari
    Dao, Ming
    Fujiwara, Masami
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2010, 24 (1-2): : 227 - 237
  • [3] ANALYSIS ON PSEUDO-STEADY INDENTATION CREEP
    Takagi, Hidenari
    Dao, Ming
    Fujiwara, Masami
    ACTA MECHANICA SOLIDA SINICA, 2008, 21 (04) : 283 - 288
  • [4] Analysis on Pseudo-Steady Indentation Creep
    Hidenari Takagi
    Ming Dao
    Masami Fujiwara
    Acta Mechanica Solida Sinica, 2008, 21 : 283 - 288
  • [5] ANALYSIS ON PSEUDO-STEADY INDENTATION CREEP
    Hidenari Takagi
    Masami Fujiwara
    Acta Mechanica Solida Sinica, 2008, (04) : 283 - 288
  • [6] Classification of pseudo-steady shock wave reflection types
    Semenov, A. N.
    Berezkina, M. K.
    Krassovskaya, I. V.
    SHOCK WAVES, 2012, 22 (04) : 307 - 316
  • [7] Influence of hemorrhage on propofol pseudo-steady state concentration
    Kazama, T
    Kurita, T
    Morita, K
    Nakata, J
    Sato, S
    ANESTHESIOLOGY, 2002, 97 (05) : 1156 - 1161
  • [8] On shock polar solutions of pseudo-steady Mach reflections
    Liu, J.-J.
    Lee, S.-H.
    Journal of the Chinese Society of Mechanical Engineers, Transactions of the Chinese Institute of Engineers, Series C/Chung-Kuo Chi Hsueh Kung Ch'eng Hsuebo Pao, 2001, 22 (02): : 153 - 159
  • [9] Classification of pseudo-steady shock wave reflection types
    A. N. Semenov
    M. K. Berezkina
    I. V. Krassovskaya
    Shock Waves, 2012, 22 : 307 - 316
  • [10] Pseudo-steady state analysis in fractured tight oil reservoirs
    Ezulike, Obinna Daniel
    Ghanbari, Ebrahim
    Siddiqui, Shahab
    Dehghanpour, Hassan
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2015, 129 : 40 - 47