Statistical inference of inverted Nadarajah-Haghighi distribution under type-II generalized hybrid censoring competing risks data

被引:3
|
作者
Abushal, Tahani A. [1 ]
AL-Zaydi, Areej M. [2 ]
机构
[1] Umm AL Qura Univ, Fac Sci, Dept Math, POB 715, Mecca 21955, Saudi Arabia
[2] Taif Univ, Fac Sci, Dept Math & Stat, POB 11099, Taif 21944, Saudi Arabia
关键词
Bayes estimate; Bootstrap CI; Competing risks; Credible CI; GT-II HCS; HPD; Inverted Nadarajah Haghighi distribution (INHD); Maximum likelihood estimate (MLE); MCMC; EXACT LIKELIHOOD INFERENCE; EXPONENTIAL-DISTRIBUTION;
D O I
10.1007/s10665-023-10331-1
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Tahir et al. (J Stat Comput Simul 88(14):2775-2798, 2018) introduced the inverse Nadarajah-Haghighi distribution (INHD) and demonstrated its ability to model positive real data sets with decreasing and upside-down bathtub hazard rate shapes. This article focuses on the inference of unknown parameters using a generalized Type-II hybrid censoring scheme (GT-II HCS) for the INHD in the presence of competing risks. The maximum likelihood (ML) and Bayes approaches are used to estimate the model parameters. Based on the squared error loss function, we compute Bayes estimates using Markov Chain Monte Carlo (MCMC) by applying Metropolis-Hasting (M-H) algorithm. Furthermore, the asymptotic confidence intervals, bootstrap confidence intervals (BCIs) and the highest posterior density (HPD) credible intervals are constructed. Using real data sets and simulation studies, we examined the introduced methods of inference with different sample sizes.
引用
收藏
页数:20
相关论文
共 50 条