Hermite-Hadamard and Fejer-type inequalities for generalized ?-convex stochastic processes

被引:2
|
作者
Bisht, Jaya [1 ]
Mishra, Rohan [2 ]
Hamdi, A. [3 ]
机构
[1] Banaras Hindu Univ, Inst Sci, Dept Math, Varanasi, India
[2] Banaras Hindu Univ, Inst Sci, Dept Stat, Varanasi, India
[3] Qatar Univ, Coll Arts & Sci, Dept Math Stat & Phys, Math Program, POB 2713, Doha, Qatar
关键词
Hermite-Hadamard inequality; convex stochastic processes; eta-convex stochastic processes; coordinated convex stochastic processes;
D O I
10.1080/03610926.2023.2218506
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article, we introduce the concept of (?(1),?(2))-convex stochastic processes on coordinates and establish Hermite-Hadamard-type inequality for these stochastic processes. Moreover, we prove new integral inequality of Hermite-Hadamard-Fejer type for newly defined coordinated ?-convex stochastic processes on a rectangle. The results presented in this article would provide extensions of those given in earlier works.
引用
收藏
页码:5299 / 5310
页数:12
相关论文
共 50 条
  • [1] GENERALIZED FRACTIONAL INEQUALITIES OF THE HERMITE-HADAMARD TYPE FOR CONVEX STOCHASTIC PROCESSES
    Omaba, McSylvester Ejighikeme
    Nwaeze, Eze R.
    ANNALES MATHEMATICAE SILESIANAE, 2021, 35 (01) : 90 - 104
  • [2] Jensen, Hermite-Hadamard, and Fejer-Type Inequalities for Reciprocally Strongly (h, s)-Convex Functions
    Wang, Yujun
    Saleem, Muhammad Shoaib
    Perveen, Zahida
    Imran, Muhammad
    JOURNAL OF MATHEMATICS, 2023, 2023
  • [3] Fejer and Hermite-Hadamard Type Inequalities for Harmonically Convex Functions
    Chen, Feixiang
    Wu, Shanhe
    JOURNAL OF APPLIED MATHEMATICS, 2014,
  • [4] Fractional Version of Hermite-Hadamard and Fejer Type Inequalities for a Generalized Class of Convex Functions
    Geng, Lei
    Saleem, Muhammad Shoaib
    Aslam, Kiran Naseem
    Bano, Rahat
    JOURNAL OF FUNCTION SPACES, 2022, 2022
  • [5] Hermite-Hadamard and Fejer-type inequalities for strongly reciprocally (p, h)-convex functions of higher order
    Li, Han
    Saleem, Muhammad Shoaib
    Ahmed, Imran
    Aslam, Kiran Naseem
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2023, 2023 (01)
  • [6] Hermite-Hadamard and Hermite-Hadamard-Fejer type inequalities for generalized fractional integrals
    Chen, Hua
    Katugampola, Udita N.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 446 (02) : 1274 - 1291
  • [7] Quantum Hermite-Hadamard type integral inequalities for convex stochastic processes
    Sitthiwirattham, Thanin
    Ali, Muhammad Aamir
    Budak, Huseyin
    Chasreechai, Saowaluck
    AIMS MATHEMATICS, 2021, 6 (11): : 11989 - 12010
  • [8] HERMITE-HADAMARD TYPE INEQUALITIES FOR m-CONVEX AND (α, m)-CONVEX STOCHASTIC PROCESSES
    Ozcan, Serap
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2019, 17 (05): : 793 - 802
  • [9] On Hermite-Hadamard type inequalities for n-polynomial convex stochastic processes
    Fu, Haoliang
    Saleem, Muhammad Shoaib
    Nazeer, Waqas
    Ghafoor, Mamoona
    Li, Peigen
    AIMS MATHEMATICS, 2021, 6 (06): : 6322 - 6339
  • [10] Hermite-Hadamard type inequalities for r-convex positive stochastic processes
    Ul-Haq, Wasim
    Rehman, Nasir
    Al-Hussain, Ziyad Ali
    JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE, 2019, 13 (01): : 87 - 90