Sustainable high-energy aqueous zinc-manganese dioxide batteries enabled by stress-governed metal electrodeposition and fast zinc diffusivity

被引:29
|
作者
Yang, Huijun [1 ]
Zhu, Ruijie [2 ]
Yang, Yang [3 ]
Lu, Ziyang [3 ]
Chang, Zhi [1 ]
He, Ping [4 ,5 ]
Zhu, Chunyu [6 ]
Kitano, Sho [7 ]
Aoki, Yoshitaka [7 ]
Habazaki, Hiroki [7 ]
Zhou, Haoshen [1 ,4 ,5 ]
机构
[1] Natl Inst Adv Ind Sci & Technol, Energy Technol Res Inst, Tsukuba 3058568, Japan
[2] Hokkaido Univ, Grad Sch Chem Sci & Engn, Sapporo, Hokkaido 0608628, Japan
[3] Univ Tsukuba, Grad Sch Syst & Informat Engn, 1-1-1 Tennoudai, Tsukuba, Japan
[4] Nanjing Univ, Coll Engn & Appl Sci, Ctr Energy Storage Mat Technol, Jiangsu Key Lab Artificial Funct Mat,Natl Lab Soli, Nanjing 210093, Peoples R China
[5] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Peoples R China
[6] China Univ Min & Technol, Sch Elect & Power Engn, Xuzhou 221116, Peoples R China
[7] Hokkaido Univ, Fac Engn, Div Appl Chem, Sapporo, Hokkaido 0608628, Japan
关键词
LONG-LIFE; DEFORMATION; PERFORMANCE; CHEMISTRY; IMPACT; ANODE;
D O I
10.1039/d2ee03777g
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The re-evaluation of zinc (Zn)-based energy storage systems satisfies emerging demands in terms of safety and cost-effectiveness. However, the dendritic Zn morphology and resulting short circuits within the cell remain long-standing challenges. Moreover, diverse Zn dendrite propagation exacerbates the situation, particularly during high-capacity battery operation. The high-capacity Zn deposition/dissolution process involves numerous sites and interfaces, which leads to disordered Zn dendrite growth because of the inherent diffusion-limited aggregation mechanism. Here, we demonstrate a robust polymer separator that serves as both a physical barrier to stress-governed metal electrodeposition and an ionic charge carrier for fast Zn2+ diffusivity. These insights enable an ultra-high Zn reversibility (99.97%) for 2000 cycles at 20.0 mA cm(-2) and 4.0 mA h cm(-2), and a high-energy-density (115 W h kg(-1) based on pouch cell) Zn-MnO2 full battery with an aggressive N/P capacity ratio (1.35). The abundant and environmentally friendly cell components make it a sustainable battery technology for global electrification.
引用
收藏
页码:2133 / 2141
页数:9
相关论文
共 50 条
  • [1] Decoupling electrolytes towards stable and high-energy rechargeable aqueous zinc-manganese dioxide batteries
    Zhong, Cheng
    Liu, Bin
    Ding, Jia
    Liu, Xiaorui
    Zhong, Yuwei
    Li, Yuan
    Sun, Changbin
    Han, Xiaopeng
    Deng, Yida
    Zhao, Naiqin
    Hu, Wenbin
    [J]. NATURE ENERGY, 2020, 5 (06) : 440 - 449
  • [2] Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities
    Zhang, Ning
    Cheng, Fangyi
    Liu, Junxiang
    Wang, Liubin
    Long, Xinghui
    Liu, Xiaosong
    Li, Fujun
    Chen, Jun
    [J]. NATURE COMMUNICATIONS, 2017, 8
  • [3] Understanding intercalation chemistry for sustainable aqueous zinc-manganese dioxide batteries
    Yuan, Yifei
    Sharpe, Ryan
    He, Kun
    Li, Chenghang
    Saray, Mahmoud Tamadoni
    Liu, Tongchao
    Yao, Wentao
    Cheng, Meng
    Jin, Huile
    Wang, Shun
    Amine, Khalil
    Shahbazian-Yassar, Reza
    Islam, M. Saiful
    Lu, Jun
    [J]. NATURE SUSTAINABILITY, 2022, 5 (10) : 890 - 898
  • [4] Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities
    Ning Zhang
    Fangyi Cheng
    Junxiang Liu
    Liubin Wang
    Xinghui Long
    Xiaosong Liu
    Fujun Li
    Jun Chen
    [J]. Nature Communications, 8
  • [5] Joint Charge Storage for High-Rate Aqueous Zinc-Manganese Dioxide Batteries
    Jin, Yan
    Zou, Lianfeng
    Liu, Lili
    Engelhard, Mark H.
    Patel, Rajankumar L.
    Nie, Zimin
    Han, Kee Sung
    Shao, Yuyan
    Wang, Chongmin
    Zhu, Jia
    Pan, Huilin
    Liu, Jun
    [J]. ADVANCED MATERIALS, 2019, 31 (29)
  • [6] Rechargeable Aqueous Zinc-Manganese Dioxide/Graphene Batteries with High Rate Capability and Large Capacity
    Wang, Chunyan
    Wang, Mingqiang
    He, Zhichao
    Liu, Li
    Huang, Yudong
    [J]. ACS APPLIED ENERGY MATERIALS, 2020, 3 (02): : 1742 - 1748
  • [7] Decoupling electrolytes towards stable and high-energy rechargeable aqueous zinc–manganese dioxide batteries
    Cheng Zhong
    Bin Liu
    Jia Ding
    Xiaorui Liu
    Yuwei Zhong
    Yuan Li
    Changbin Sun
    Xiaopeng Han
    Yida Deng
    Naiqin Zhao
    Wenbin Hu
    [J]. Nature Energy, 2020, 5 : 440 - 449
  • [8] A Short Review: Comparison of Zinc-Manganese Dioxide Batteries with Different pH Aqueous Electrolytes
    Durena, Ramona
    Zukuls, Anzelms
    [J]. BATTERIES-BASEL, 2023, 9 (06):
  • [9] Understanding intercalation chemistry for sustainable aqueous zinc–manganese dioxide batteries
    Yifei Yuan
    Ryan Sharpe
    Kun He
    Chenghang Li
    Mahmoud Tamadoni Saray
    Tongchao Liu
    Wentao Yao
    Meng Cheng
    Huile Jin
    Shun Wang
    Khalil Amine
    Reza Shahbazian-Yassar
    M. Saiful Islam
    Jun Lu
    [J]. Nature Sustainability, 2022, 5 : 890 - 898
  • [10] Surface Adsorption and Proton Chemistry of Ultra-Stabilized Aqueous Zinc-Manganese Dioxide Batteries
    Chen, Qiang
    Lou, Xuan
    Yuan, Yifei
    You, Kun
    Li, Chenghang
    Jiang, Chenhao
    Zeng, Yuquan
    Zhou, Sheng
    Zhang, Jianli
    Hou, Guangya
    Lu, Jun
    Tang, Yiping
    [J]. ADVANCED MATERIALS, 2023, 35 (49)