Transcritical Bifurcation for the Conditional Distribution of a Diffusion Process

被引:1
|
作者
Benaim, Michel [1 ]
Champagnat, Nicolas [2 ]
Ocafrain, William [2 ]
Villemonais, Denis [2 ]
机构
[1] Univ Neuchatel, Inst Math, Neuchatel, Switzerland
[2] Univ Lorraine, IECL, INRIA, CNRS, F-54000 Nancy, France
关键词
Absorbed Markov processes; Quasi-stationary distributions; Exponential mixing; Stochastic differential equations; Bifurcation; QUASI-STATIONARY DISTRIBUTIONS; ONE-DIMENSIONAL DIFFUSIONS; CONVERGENCE; BOUNDARY; TIME;
D O I
10.1007/s10959-022-01216-7
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article, we describe a simple class of models of absorbed diffusion processes with parameter, whose conditional law exhibits a transcritical bifurcation. Our proofs are based on the description of the set of quasi-stationary distributions for general two-clusters reducible processes.
引用
收藏
页码:1555 / 1571
页数:17
相关论文
共 50 条
  • [1] Transcritical Bifurcation for the Conditional Distribution of a Diffusion Process
    Michel Benaïm
    Nicolas Champagnat
    William Oçafrain
    Denis Villemonais
    Journal of Theoretical Probability, 2023, 36 : 1555 - 1571
  • [2] Transcritical Bifurcation
    Liebscher, Stefan
    BIFURCATION WITHOUT PARAMETERS, 2015, 2117 : 27 - 34
  • [3] Degenerate Transcritical Bifurcation
    Liebscher, Stefan
    BIFURCATION WITHOUT PARAMETERS, 2015, 2117 : 57 - 65
  • [4] Conditional Diffusion Process for Inverse Halftoning
    Jiang, Hao
    Mu, Yadong
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [5] Solution and transcritical bifurcation of Burgers equation
    唐驾时
    赵明华
    韩峰
    张良
    Chinese Physics B, 2011, 20 (02) : 114 - 117
  • [6] Transcritical bifurcation with O(3) symmetry
    Matthews, PC
    NONLINEARITY, 2003, 16 (04) : 1449 - 1471
  • [7] Transcritical bifurcation in a multiparametric nonlinear system
    Ferrer, Osmin
    Guerra, Jose
    Reyes, Alberto
    AIMS MATHEMATICS, 2022, 7 (08): : 13803 - 13820
  • [8] Solution and transcritical bifurcation of Burgers equation
    Tang Jia-Shi
    Zhao Ming-Hua
    Han Feng
    Zhang Liang
    CHINESE PHYSICS B, 2011, 20 (02)
  • [9] A transcritical bifurcation in an immune response model
    Burroughs, N. J.
    Ferreira, M.
    Oliveira, B. M. P. M.
    Pinto, A. A.
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2011, 17 (07) : 1101 - 1106
  • [10] Homoclinic flip bifurcations accompanied by transcritical bifurcation
    Liu, Xingbo
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2011, 32 (06) : 905 - 916