Economic and Sustainability Impacts of Yield and Composition Variation in Bioenergy Crops: Switchgrass (Panicum virgatum L.)

被引:1
|
作者
Happs, Renee M. [1 ,2 ]
Hanes, Rebecca J. [2 ,3 ]
Bartling, Andrew W. [2 ,4 ]
Field, John L. [2 ,5 ]
Harman-Ware, Anne E. [1 ,2 ]
Clark, Robin J. [2 ,5 ]
Pendergast IV, Thomas H. [2 ,6 ,7 ,8 ]
Devos, Katrien M. [2 ,6 ,7 ,8 ]
Webb, Erin G. [2 ,5 ]
Missaoui, Ali [2 ,6 ,7 ]
Xu, Yaping [2 ,9 ]
Makaju, Shiva [2 ,6 ,7 ]
Shrestha, Vivek [2 ,9 ]
Mazarei, Mitra [2 ,9 ]
Stewart Jr, Charles Neal [2 ,9 ]
Millwood, Reginald J. [2 ,9 ]
Davison, Brian H. [2 ,10 ]
机构
[1] Renewable Resources & Enabling Sci Ctr, Natl Renewable Energy Lab, Golden, CO 80401 USA
[2] Oak Ridge Natl Lab, Ctr Bioenergy Innovat, Oak Ridge, TN 37830 USA
[3] Natl Renewable Energy Lab, Strateg Energy Anal Ctr, Golden, CO 80401 USA
[4] Catalyt Carbon & Transformat Ctr, Natl Renewable Energy Lab, Golden, CO 80401 USA
[5] Environm Sci Div, Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA
[6] Univ Georgia, Inst Plant Breeding Genet & Genom, Athens, GA 30602 USA
[7] Univ Georgia, Dept Crop & Soil Sci, Athens, GA 30602 USA
[8] Univ Georgia, Dept Plant Biol, Athens, GA 30602 USA
[9] Univ Tennessee Knoxville, Dept Plant Sci, Knoxville, TN 37919 USA
[10] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37830 USA
关键词
feedstock variability; techno-economic analysis; life cycle analysis; switchgrass; bioethanol; minimum fuel selling price; composition; biomassyield; BIOMASS PRODUCTION; RECALCITRANCE;
D O I
10.1021/acssuschemeng.3c05770
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Economically viable production of biobased products and fuels requires high-yielding, high-quality, sustainable process-advantaged crops, developed using bioengineering or advanced breeding approaches. Understanding which crop phenotypic traits have the largest impact on biofuel economics and sustainability outcomes is important for the targeted feedstock crop development. Here, we evaluated biomass yield and cell-wall composition traits across a large natural variant population of switchgrass (Panicum virgatum L.) grown across three common garden sites. Samples from 331 switchgrass genotypes were collected and analyzed for carbohydrate and lignin components. Considering plant survival and biomass after multiple years of growth, we found that 84 of the genotypes analyzed may be suited for commercial production in the southeastern U.S. These genotypes show a range of growth and compositional traits across the population that are apparently independent of each other. We used these data to conduct techno-economic analyses and life cycle assessments evaluating the performance of each switchgrass genotype under a standard cellulosic ethanol process model with pretreatment, added enzymes, and fermentation. We find that switchgrass yield per area is the largest economic driver of the minimum fuel selling price (MSFP), ethanol yield per hectare, global warming potential (GWP), and cumulative energy demand (CED). At any yield, the carbohydrate content is significant but of secondary importance. Water use follows similar trends but has more variability due to an increased dependence on the biorefinery model. Analyses presented here highlight the primary importance of plant yield and the secondary importance of carbohydrate content when selecting a feedstock that is both economical and sustainable.
引用
收藏
页码:1897 / 1910
页数:14
相关论文
共 50 条
  • [1] Genetic Variation in Lowland Switchgrass (Panicum virgatum L.)
    Bhandari, Hem S.
    Saha, Malay C.
    Bouton, Joseph H.
    [J]. SUSTAINABLE USE OF GENETIC DIVERSITY IN FORAGE AND TURF BREEDING, 2010, : 67 - +
  • [2] Genetic variation for bioenergy traits within and among lowland switchgrass (Panicum virgatum L.) crosses
    Shrestha, Surya L.
    Allen, Fred L.
    Goddard, Ken
    Bhandari, Hem S.
    Bates, Gary E.
    [J]. BIOMASS & BIOENERGY, 2023, 175
  • [3] Carbohydrate and lignin partitioning in switchgrass (Panicum virgatum L.) biomass as a bioenergy feedstock
    Butkute, Bronislava
    Lemeziene, Nijole
    Ceseviciene, Jurgita
    Liatukas, Zilvinas
    Dabkeviciene, Giedre
    [J]. ZEMDIRBYSTE-AGRICULTURE, 2013, 100 (03) : 251 - 260
  • [4] Hunt for sources of rust resistance in the bioenergy crop, switchgrass (Panicum virgatum L.)
    Uppalapati, S. R.
    Ishiga, Y.
    Serba, D.
    Szabo, L. J.
    Saha, M. C.
    Mysore, K. S.
    [J]. PHYTOPATHOLOGY, 2012, 102 (07) : 157 - 157
  • [5] Screening for novel bacteria from the bioenergy feedstock switchgrass (Panicum virgatum L.)
    Plecha, Sarah
    Hall, Danielle
    Tiquia-Arashiro, Sonia M.
    [J]. ENVIRONMENTAL TECHNOLOGY, 2013, 34 (13-14) : 1895 - 1904
  • [6] An evaluation of biomass yield stability of switchgrass (Panicum virgatum L.) cultivars
    Sharma, N
    Piscioneri, I
    Pignatelli, V
    [J]. ENERGY CONVERSION AND MANAGEMENT, 2003, 44 (18) : 2953 - 2958
  • [7] Effects of ecotypes and morphotypes in feedstock composition of switchgrass (Panicum virgatum L.)
    Bhandari, Hem S.
    Walker, Dennis W.
    Bouton, Joseph H.
    Saha, Malay C.
    [J]. GLOBAL CHANGE BIOLOGY BIOENERGY, 2014, 6 (01): : 26 - 34
  • [8] Yield and canopy characteristics of switchgrass (Panicum virgatum L.) as influenced by cutting management
    Trosanyi, Zs. Kiss
    Fieldsend, A. F.
    Wolf, D. D.
    [J]. BIOMASS & BIOENERGY, 2009, 33 (03): : 442 - 448
  • [9] Estimation of Genetic Parameters for Biomass Yield in Lowland Switchgrass (Panicum virgatum L.)
    Bhandari, H. S.
    Saha, M. C.
    Fasoula, V. A.
    Bouton, J. H.
    [J]. CROP SCIENCE, 2011, 51 (04) : 1525 - 1533
  • [10] Characterization of steroidal sapogenins in Panicum virgatum L. (Switchgrass)
    Lee, ST
    Stegelmeier, BL
    Gardner, DR
    Vogel, KP
    [J]. POISONOUS PLANTS AND RELATED TOXINS, 2004, : 329 - 334