Learning self-target knowledge for few-shot segmentation

被引:1
|
作者
Chen, Yadang [1 ,2 ]
Chen, Sihan [1 ,2 ]
Yang, Zhi-Xin [3 ]
Wu, Enhua [4 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Engn Res Ctr Digital Forens, Minist Educ, Nanjing 210044, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Sch Comp Sci, Nanjing 210044, Peoples R China
[3] Univ Macau, Dept Electromech Engn, State Key Lab Internet Things Smart City, Macau 999078, Peoples R China
[4] Univ Chinese Acad Sci, Inst Software, State Key Lab Comp Sci, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
Few-shot segmentation; Two-level similarity matching; Step-by-step mining; Attention mechanism;
D O I
10.1016/j.patcog.2024.110266
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Few-shot semantic segmentation uses a few annotated data of a specific class in the support set to segment the target of the same class in the query set. Most existing approaches fail to perform well when there are significant intra-class variances. This paper alleviates the problem by concentrating on mining the query image and using the support set as supplementary information. First, it proposes a Query Prototype Generation Module to generate a query foreground prototype from the query features. Specifically, we use both prototypelevel and pixel-level similarity matching to generate two complementary initial prototypes, which we then integrate to create a discriminative query foreground prototype. Second, we propose a Support Auxiliary Refinement Module to further guide the final precise prediction of the query image by leveraging the target category information of the support set through step -by-step mining. Specifically, we generate a query-support mixture prototype based on the support prototype representation obtained using the attention mechanism. Then we generate a support supplement prototype to complement the missing information by encoding over the foreground regions that the query-support mixture prototype fails to segment out. Extensive experiments on PASCAL-5 ' and COCO-20(iota). demonstrate that our model outperforms the prior works of few-shot segmentation.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Learning Non-target Knowledge for Few-shot Semantic Segmentation
    Liu, Yuanwei
    Liu, Nian
    Cao, Qinglong
    Yao, Xiwen
    Han, Junwei
    Shao, Ling
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 11563 - 11572
  • [2] SELF-COMPENSATING LEARNING FOR FEW-SHOT SEGMENTATION
    Wang, Jin
    Zhang, Bingfeng
    Liu, Weifeng
    Liu, Baodi
    Yu, Siyue
    2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 1320 - 1324
  • [3] Target-aware for Few-shot Segmentation
    Luo, XiaoLiu
    Zhang, Taiping
    Duan, Zhao
    Tan, Jin
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [4] Self-Supervised Learning for Few-Shot Medical Image Segmentation
    Ouyang, Cheng
    Biffi, Carlo
    Chen, Chen
    Kart, Turkay
    Qiu, Huaqi
    Rueckert, Daniel
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2022, 41 (07) : 1837 - 1848
  • [5] Integrative Few-Shot Learning for Classification and Segmentation
    Kang, Dahyun
    Cho, Minsu
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 9969 - 9980
  • [6] LEARNING WITH MEMORY FOR FEW-SHOT SEMANTIC SEGMENTATION
    Lu, Hongchao
    Wei, Chao
    Deng, Zhidong
    2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 629 - 633
  • [7] Fast target-aware learning for few-shot video object segmentation
    Yadang CHEN
    Chuanyan HAO
    Zhi-Xin YANG
    Enhua WU
    Science China(Information Sciences), 2022, 65 (08) : 71 - 86
  • [8] Fast target-aware learning for few-shot video object segmentation
    Chen, Yadang
    Hao, Chuanyan
    Yang, Zhi-Xin
    Wu, Enhua
    SCIENCE CHINA-INFORMATION SCIENCES, 2022, 65 (08)
  • [9] Real-time multiple target segmentation with multimodal few-shot learning
    Khoshboresh-Masouleh, Mehdi
    Shah-Hosseini, Reza
    FRONTIERS IN COMPUTER SCIENCE, 2022, 4
  • [10] Fast target-aware learning for few-shot video object segmentation
    Yadang Chen
    Chuanyan Hao
    Zhi-Xin Yang
    Enhua Wu
    Science China Information Sciences, 2022, 65