Robust training of median dendritic artificial neural networks for time series forecasting

被引:9
|
作者
Bas, Eren [1 ]
Egrioglu, Erol [1 ]
Cansu, Turan [1 ]
机构
[1] Giresun Univ, Fac Arts & Sci, Dept Stat, TR-28200 Giresun, Turkiye
关键词
Artificial neural networks; Dendritic neuron model; Symbiotic organism search; Robust learning; Outlier; MODEL;
D O I
10.1016/j.eswa.2023.122080
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Although artificial neural network models have produced very successful results in the time series forecasting problem in recent years, an outlier or outliers in the data set adversely affect the forecasting performance of the artificial neural network models. Dendritic neuron model artificial neural networks which are the most similar neural network model to an artificial neural network model are also adversely affected by outliers in the data set like many artificial neural network models in the literature. In this study, to prevent the dendritic neuron model artificial neural networks from being affected by the outliers in the data set; a robust learning algorithm based on Talwar's m estimator, median statistics to prevent the effect of outliers in the inputs, and a new data preprocessing method are used together in a network structure. In addition, the training of the proposed artificial neural network model is carried out with the symbiotic organism search algorithm. To evaluate the performance of the proposed method, analyses are carried out over the closing prices of the time series of Spain, Italy and German stock exchanges in certain years. According to the results of the analysis of the time series of the relevant stock exchanges, both in their original state and by injecting outliers into the time series, the proposed method has superior forecasting performance even when the time series contains outliers and does not contain outliers.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Robust recurrent neural networks for time series forecasting
    Zhang, Xueli
    Zhong, Cankun
    Zhang, Jianjun
    Wang, Ting
    Ng, Wing W. Y.
    [J]. NEUROCOMPUTING, 2023, 526 : 143 - 157
  • [2] Nonlinear time series forecasting with artificial neural networks
    Zhang, GP
    Patuwo, BE
    Hu, MY
    [J]. DECISION SCIENCES INSTITUTE 1998 PROCEEDINGS, VOLS 1-3, 1998, : 1023 - 1025
  • [3] Artificial Neural Networks for Forecasting of Fuzzy Time Series
    Reuter, U.
    Moeller, B.
    [J]. COMPUTER-AIDED CIVIL AND INFRASTRUCTURE ENGINEERING, 2010, 25 (05) : 363 - 374
  • [4] Artificial neural networks applied to forecasting time series
    Montano Moreno, Juan Jose
    Palmer Pol, Alfonso
    Munoz Gracia, Pilar
    [J]. PSICOTHEMA, 2011, 23 (02) : 322 - 329
  • [5] Training Algorithms for Artificial Neural Networks for Time Series Forecasting of Greenhouse Gas Concentrations
    Shichkin, Andrey
    Buevich, Alexander
    Sergeev, Alexander
    Medvedev, Aleksandr
    Kosachenko, Alexandra
    Moskaleva, Anastasia
    Sergeeva, Marina
    [J]. INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM-2018), 2019, 2116
  • [6] Ensembles of Recurrent Neural Networks for Robust Time Series Forecasting
    Krstanovic, Sascha
    Paulheim, Heiko
    [J]. ARTIFICIAL INTELLIGENCE XXXIV, AI 2017, 2017, 10630 : 34 - 46
  • [7] Methodological Advances in Artificial Neural Networks for Time Series Forecasting
    Cogollo, M. R.
    Velasquez, J. D.
    [J]. IEEE LATIN AMERICA TRANSACTIONS, 2014, 12 (04) : 764 - 771
  • [8] Forecasting strong seasonal time series with artificial neural networks
    Adhikari, Ratnadip
    Agrawal, R. K.
    [J]. JOURNAL OF SCIENTIFIC & INDUSTRIAL RESEARCH, 2012, 71 (10): : 657 - 666
  • [9] Artificial neural networks in time series forecasting: A comparative analysis
    Allende, H
    Moraga, C
    Salas, R
    [J]. KYBERNETIKA, 2002, 38 (06) : 685 - 707
  • [10] Forecasting Time Series by an Ensemble of Artificial Neural Networks based on transforming the Time Series
    Gutierrez, German
    Paz Sesmero, M.
    Sanchis, Araceli
    [J]. 2016 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2016, : 4769 - 4774