High wear resistance and strength of Hastelloy X reinforced with TiC fabricated by laser powder bed fusion additive manufacturing

被引:14
|
作者
Hu, Jun [1 ]
Lin, Xin [2 ]
Hu, Yunlong [1 ,3 ]
机构
[1] Jinan Univ, Inst Adv Wear & Corros Resistance & Funct Mat, Guangzhou 510632, Guangdong, Peoples R China
[2] Northwestern Polytech Univ, State Key Lab Solidificat Proc, Xian 710072, Shaanxi, Peoples R China
[3] Suzhou Lab, Suzhou 215123, Peoples R China
基金
中国国家自然科学基金;
关键词
Hastelloy X nickel -based superalloy; Laser powder bed fusion; Nano-TiC particles; Microstructure evolution; Friction and wear; Tensile properties; BULK METALLIC-GLASS; MECHANICAL-PROPERTIES; MICROSTRUCTURE; BEHAVIOR; COMPOSITES; SUPERALLOYS; INTERFACE; FRICTION; HARDNESS;
D O I
10.1016/j.apsusc.2023.159004
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Hastelloy X (HX) alloy as a typical solid solution strengthened nickel-based superalloy, has been widely used in the preparation of hot end components. The microstructure evolution and properties of HX alloy and nano-TiC reinforced HX alloy (TiC/HX) formed by laser powder bed fusion (LPBF) were studied. The results show that adding 3 wt% nano-TiC particles can not only inhibit the formation of cracks, but also effectively improve the dry sliding friction, wear properties and room temperature tensile properties. Nano-TiC particles can significantly promote the competitive growth of dendrites, refine the grains, and reduce the residual thermal stress. In addition, it can significantly improve the shear modulus and tensile strength. Under the same forming parameters, the wear rate of the nano-TiC/HX composite material is 51 % lower than that of the pure HX alloy, only 174.49 mu m3/(N & sdot;mm). At the same time, the tensile strength of the alloy increased from 708 MPa to 1131 MPa, the yield strength increased from 619 MPa to 842 MPa, and the elongation doubled to 16 %.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Effect of hot cracking on the mechanical properties of Hastelloy X superalloy fabricated by laser powder bed fusion additive manufacturing
    Han, Quanquan
    Gu, Yuchen
    Soe, Shwe
    Lacan, Franck
    Setchi, Rossitza
    OPTICS AND LASER TECHNOLOGY, 2020, 124
  • [2] In-situ TiC particle-reinforced Hastelloy X superalloy fabricated by laser additive manufacturing
    Wang, Chen
    Yang, Li
    Sheng, Rui-Xin
    Guan, Shuai
    Bi, Zhong-Nan
    Zhang, Hua
    Huang, Hai-Liang
    Jiang, Liang
    Zhu, Li-Long
    Zhou, Xin
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2025, 36 : 1511 - 1521
  • [3] The effect of carbides on the creep performance of Hastelloy X fabricated by laser powder bed fusion
    Wu, S.
    Dai, S. B.
    Heilmaier, M.
    Peng, H. Z.
    Zhang, G. H.
    Huang, S.
    Zhang, X. J.
    Tian, Y.
    Zhu, Y. M.
    Huang, A. J.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2023, 875
  • [4] Review of high-strength aluminium alloys for additive manufacturing by laser powder bed fusion
    Rometsch, Paul A.
    Zhu, Yuman
    Wu, Xinhua
    Huang, Aijun
    MATERIALS & DESIGN, 2022, 219
  • [5] Modeling and analysis of the mechanical anisotropy of Hastelloy X alloy fabricated by laser powder bed fusion
    Li, Ruolin
    Cheng, Liang
    Liu, Ji
    Zhang, Yunlong
    Li, Sai
    Bai, Jie
    Ma, Rui
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 33 : 7949 - 7960
  • [6] Recrystallization effect on surface passivation of Hastelloy X alloy fabricated by laser powder bed fusion
    He, Xing
    Wang, Li
    Kong, Decheng
    Li, Ruixue
    Zhang, Wei
    Dai, Kunjie
    Ni, Xiaoqing
    He, Ketai
    Dong, Chaofang
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2023, 163 : 245 - 258
  • [7] On the effect of spatter particles distribution on the quality of Hastelloy X parts made by laser powder-bed fusion additive manufacturing
    Esmaeilizadeh, Reza
    Ali, Usman
    Keshavarzkermani, Ali
    Mahmoodkhani, Yahya
    Marzbanrad, Ehsan
    Toyserkani, Ehsan
    JOURNAL OF MANUFACTURING PROCESSES, 2019, 37 : 11 - 20
  • [8] Fatigue and dynamic aging behavior of a high strength Al-5024 alloy fabricated by laser powder bed fusion additive manufacturing
    He, Peidong
    Webster, Richard F.
    Yakubov, Vladislav
    Kong, Hui
    Yang, Qin
    Huang, Shuke
    Ferry, Michael
    Kruzic, Jamie J.
    Li, Xiaopeng
    ACTA MATERIALIA, 2021, 220
  • [9] Additive manufacturing of glass with laser powder bed fusion
    Datsiou, Kyriaki Corinna
    Saleh, Ehab
    Spirrett, Fiona
    Goodridge, Ruth
    Ashcroft, Ian
    Eustice, Dave
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2019, 102 (08) : 4410 - 4414
  • [10] The optimization of residual stress in arc bridge Hastelloy X components fabricated by Laser Powder Bed Fusion
    Liu, Yi
    Fang, Xuewei
    Li, Xinzhi
    Huang, Ke
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2023, 129 (9-10): : 4457 - 4471