Optimization of extreme ultra-violet light emitted from the CO2 laser-irradiated tin plasmas using 2D radiation hydrodynamic simulations

被引:14
|
作者
Sunahara, Atsushi [1 ,2 ]
Hassanein, Ahmed [1 ]
Tomita, Kentaro [3 ]
Namba, Shinichi [4 ]
Higashiguchi, Takeshi [5 ]
机构
[1] Purdue Univ, Sch Nucl Engn, CMUXE, 500 Cent Dr, W Lafayette, IN 47907 USA
[2] Osaka Univ, Inst Laser Engn, 2-6 Yamadaoka, Suita, Osaka 5650871, Japan
[3] Hokkaido Univ, Grad Sch Engn, Div Quantum Sci & Engn, Kita 13,Nishi 8,Kita Ku, Sapporo, Hokkaido 0608628, Japan
[4] Hiroshima Univ, Dept Adv Sci & Engn, 1-4-1 Kagamiyama, Higashihiroshima, Hiroshima 7398527, Japan
[5] Utsunomiya Univ, Dept Elect & Elect Engn, Fac Engn, 7-1-2 Yoto, Utsunomiya, Tochigi 3218585, Japan
基金
日本学术振兴会;
关键词
INVERSE BREMSSTRAHLUNG; ULTRAVIOLET LIGHT; EMISSION; DYNAMICS; POWER;
D O I
10.1364/OE.497282
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We studied Extreme Ultra-Violet (EUV) emission characteristics of the 13.5 nm wavelength from CO2 laser-irradiated pre-formed tin plasmas using 2D radiation hydrodynamic simulations. Our results indicate that when a CO2 laser irradiates pre-formed tin plasma, the heated plasma expands towards the surrounding plasma, steepening the density at the ablation front and lowering the density near the laser axis due to the transverse motion of the plasma. Consequently, the laser absorption fraction decreases, and the contribution to EUV output from the ablation front becomes dominant over that from the low-density plasmas. We estimated that an EUV conversion efficiency of 10% from laser to EUV emission could be achieved with a larger laser spot size, shortened laser pulse width, and longer pre-formed plasma density scale length. Our results offer one optimizing solution to achieve an efficient and powerful EUV light source for the next-generation semiconductors.
引用
收藏
页码:31780 / 31795
页数:16
相关论文
共 9 条
  • [1] Probing of laser-irradiated solid targets using coherent extreme ultra-violet radiation
    Wilson, L. A.
    Tallents, G. J.
    HIGH ENERGY DENSITY PHYSICS, 2013, 9 (03) : 402 - 406
  • [2] Two Dimensional Radiation Hydrodynamic Simulation for Extreme Ultra-Violet Emission from Laser-produced Tin Plasmas
    Sunahara, Atsushi
    Sasaki, Akira
    Nishihara, Katsunobu
    5TH INTERNATIONAL CONFERENCE ON INERTIAL FUSION SCIENCES AND APPLICATIONS (IFSA2007), 2008, 112
  • [3] Emission characteristics of debris from CO2 and Nd:YAG laser-produced tin plasmas for extreme ultraviolet lithography light source
    Takahashi, A.
    Nakamura, D.
    Tamaru, K.
    Akiyama, T.
    Okada, T.
    APPLIED PHYSICS B-LASERS AND OPTICS, 2008, 92 (01): : 73 - 77
  • [4] Emission characteristics of debris from CO2 and Nd:YAG laser-produced tin plasmas for extreme ultraviolet lithography light source
    A. Takahashi
    D. Nakamura
    K. Tamaru
    T. Akiyama
    T. Okada
    Applied Physics B, 2008, 92 : 73 - 77
  • [5] Characteristics of Extreme Ultraviolet Emission from Tin Plasma Using CO2 Laser for Lithography
    Wu Tao
    Wang Xin-bing
    Wang Shao-yi
    Lu Pei-xiang
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2012, 32 (07) : 1729 - 1733
  • [6] Debris generation from CO2 and Nd:YAG laser-produced tin plasmas for EUV light source
    Nakamura, D.
    Tamaru, K.
    Akiyama, T.
    Takahashi, A.
    Okada, T.
    PHOTON PROCESSING IN MICROELECTRONICS AND PHOTONICS VII, 2008, 6879
  • [7] Comparative study on emission characteristics of extreme ultraviolet radiation from CO2 and Nd:YAG laser-produced tin plasmas -: art. no. 041503
    Tanaka, H
    Matsumoto, A
    Akinaga, K
    Takahashi, A
    Okada, T
    APPLIED PHYSICS LETTERS, 2005, 87 (04)
  • [8] Spectral Efficiency of Extreme Ultraviolet Emission from CO2 Laser-Produced Tin Plasma Using a Grazing Incidence Flat-Field Spectrograph
    Wu Tao
    Wang Xinbing
    Wang Shaoyi
    PLASMA SCIENCE & TECHNOLOGY, 2013, 15 (05) : 435 - 438
  • [9] Spectral Efficiency of Extreme Ultraviolet Emission from CO2 Laser-Produced Tin Plasma Using a Grazing Incidence Flat-Field Spectrograph
    吴涛
    王新兵
    王少义
    Plasma Science and Technology, 2013, 15 (05) : 435 - 438