Detection and classification of darknet traffic using machine learning methods

被引:3
|
作者
Ugurlu, Mesut [1 ]
Dogru, Ibrahim Alper [2 ]
Arslan, Recep Sinan [3 ]
机构
[1] Gazi Univ, Grad Sch Nat & Appl Sci, Dept Informat Secur Engn, TR-06570 Ankara, Turkiye
[2] Gazi Univ, Fac Technol, Dept Comp Engn, TR-06570 Ankara, Turkiye
[3] Kayseri Univ, Fac Engn, Dept Comp Engn, TR-38039 Kayseri, Turkiye
关键词
Darknet; Cyber security; Encrypted network traffic; Machine learning; Classification; FEATURE-SELECTION;
D O I
10.17341/gazimmfd.1023147
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Graphical/Tabular In this study, a machine learning-based model has been developed for the detection and classification of the darknet or dark web that cybercriminals and attackers use to hide their identity information and provide encrypted communication. The statistical information of packets was analyzed using machine learning approach without deciphering encrypted network traffic. Feature selection was made to increase the performance of the model. In addition to this process, data balancing was performed in order to increase the detection and classification rate of features with low numbers during the training phase. The created model is given in Figure A.
引用
收藏
页码:1737 / 1746
页数:10
相关论文
共 50 条
  • [1] Darknet Traffic Classification using Machine Learning Techniques
    Iliadis, Lazaros Alexios
    Kaifas, Theodoros
    [J]. 2021 10TH INTERNATIONAL CONFERENCE ON MODERN CIRCUITS AND SYSTEMS TECHNOLOGIES (MOCAST), 2021,
  • [2] Darknet traffic classification and adversarial attacks using machine learning
    Rust-Nguyen, Nhien
    Sharma, Shruti
    Stamp, Mark
    [J]. COMPUTERS & SECURITY, 2023, 127
  • [3] A Survey of Network Traffic Classification Methods Using Machine Learning
    Getman, A. I.
    Ikonnikova, M. K.
    [J]. PROGRAMMING AND COMPUTER SOFTWARE, 2022, 48 (07) : 413 - 423
  • [4] A Survey of Network Traffic Classification Methods Using Machine Learning
    A. I. Getman
    M. K. Ikonnikova
    [J]. Programming and Computer Software, 2022, 48 : 413 - 423
  • [5] Machine-Learning-Based Darknet Traffic Detection System for IoT Applications
    Abu Al-Haija, Qasem
    Krichen, Moez
    Abu Elhaija, Wejdan
    [J]. ELECTRONICS, 2022, 11 (04)
  • [6] Edge-Based Detection and Classification of Malicious Contents in Tor Darknet Using Machine Learning
    Li, Runchuan
    Chen, Shuhong
    Yang, Jiawei
    Luo, Entao
    [J]. MOBILE INFORMATION SYSTEMS, 2021, 2021
  • [7] Machine learning for anonymous traffic detection and classification
    Akshobhya, K. M.
    [J]. 2021 11TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING, DATA SCIENCE & ENGINEERING (CONFLUENCE 2021), 2021, : 942 - 947
  • [8] Internet traffic classification using machine learning
    Jun, Li
    Shunyi, Zhang
    Yanqing, Lu
    Zailong, Zhang
    [J]. 2007 SECOND INTERNATIONAL CONFERENCE IN COMMUNICATIONS AND NETWORKING IN CHINA, VOLS 1 AND 2, 2007, : 68 - 72
  • [9] Deep Neural Classification of Darknet Traffic
    Alimoradi, Mahmoud
    Zabihimayvan, Mahdieh
    Daliri, Arman
    Sledzik, Ryan
    Sadeghi, Reza
    [J]. ARTIFICIAL INTELLIGENCE RESEARCH AND DEVELOPMENT, 2022, 356 : 105 - 114
  • [10] Classification of Application Traffic Using Tensorflow Machine Learning
    Park, Jee-Tae
    Shim, Kyu-Seok
    Lee, Sung-Ho
    Kim, Myung-Sup
    [J]. 2017 19TH ASIA-PACIFIC NETWORK OPERATIONS AND MANAGEMENT SYMPOSIUM (APNOMS 2017): MANAGING A WORLD OF THINGS, 2017, : 391 - 394