Compact surfaces with boundary with prescribed mean curvature depending on the Gauss map

被引:0
|
作者
Bueno, Antonio [1 ]
Lopez, Rafael [2 ]
机构
[1] Ctr Univ Def San Javier, Dept Ciencias, E-30729 Murcia, Spain
[2] Univ Granada, Dept Geometria & Topol, Av Fuente Nueva, Granada 18071, Spain
关键词
H-surfaces; Maximum principle; Alexandrov reflection method; Translators; DIRICHLET; HYPERSURFACES; EQUATIONS; FLOW;
D O I
10.1007/s10455-023-09910-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a C-1 function H defined in the unit sphere S-2, an H-surface M is a surface in the Euclidean space R-3 whose mean curvature H-M satisfies H-M( p) = H(N-p), p is an element of M, where N is the Gauss map of M. Given a closed simple curve Gamma subset of R-3 and a function H, in this paper we investigate the geometry of compact H-surfaces spanning Gamma in terms of Gamma. Under mild assumptions on H, we prove non-existence of closed H-surfaces, in contrast with the classical case of constant mean curvature. We give conditions on H that ensure that if Gamma is a circle, then M is a rotational surface. We also establish the existence of estimates of the area of H-surfaces in terms of the height of the surface.
引用
收藏
页数:16
相关论文
共 50 条