symmetry;
traveling waves;
nonlinear and nonlocal dispersive equations;
method of moving planes;
DEEP-WATER WAVES;
MAXIMAL HEIGHT;
DECAY;
D O I:
10.1137/21M1433162
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
Of concern is the a priori symmetry of traveling wave solutions of a general class of nonlocal dispersive equations ut + (u2 + Lu)x = 0, where L is a Fourier multiplier operator with symbol m. Our analysis includes both homogeneous and inhomogeneous symbols. We characterize large class of symbols m guaranteeing that periodic traveling wave solutions are symmetric under mild assumption on the wave profile. In contrast with the classically imposed setting in the water wave problem which assumes traveling waves to have a unique crest and trough per period or a monotone structure near troughs, we formulate a reflection criterion which does not presuppose monotone structure on the wave profile. Thereby, the reflection criterion enables us to treat a priori solutions with multiple crests of different size per period. Moreover, our result applies not only to smooth traveling wave solutions, but also to those with singular crests around which some cancellation structure appears, including in particular waves with peaks or cusps. The proof relies on a so-called touching lemma, which is related to a strong maximum principle for elliptic operators, and a weak form of the celebrated method of moving planes.
机构:
Sun Yat Sen Univ, Sch Math Zhuhai, Zhuhai, Peoples R China
Sun Yat Sen Univ, Sch Math Zhuhai, Zhuhai, Guangdong, Peoples R ChinaSun Yat Sen Univ, Sch Math Zhuhai, Zhuhai, Peoples R China
机构:
Harbin Inst Technol, Dept Math, Harbin 150001, Peoples R China
Mem Univ Newfoundland, Dept Math & Stat, St John, NF A1C 5S7, CanadaHarbin Inst Technol, Dept Math, Harbin 150001, Peoples R China
Fang, Jian
Wei, Junjie
论文数: 0引用数: 0
h-index: 0
机构:
Harbin Inst Technol, Dept Math, Harbin 150001, Peoples R ChinaHarbin Inst Technol, Dept Math, Harbin 150001, Peoples R China
Wei, Junjie
Zhao, Xiao-Qiang
论文数: 0引用数: 0
h-index: 0
机构:
Mem Univ Newfoundland, Dept Math & Stat, St John, NF A1C 5S7, CanadaHarbin Inst Technol, Dept Math, Harbin 150001, Peoples R China