Categorical Diversity-Aware Inner Product Search

被引:4
|
作者
Hirata, Kohei [1 ]
Amagata, Daichi [1 ]
Fujita, Sumio [2 ]
Hara, Takahiro [1 ]
机构
[1] Osaka Univ, Grad Sch Informat Sci & Technol, Osaka 5650871, Japan
[2] Yahoo Japan Corp, Tokyo 1028282, Japan
基金
日本学术振兴会; 日本科学技术振兴机构;
关键词
Inner product search; category; diversification; high-dimensional data;
D O I
10.1109/ACCESS.2023.3234072
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The problem of maximum inner product search (MIPS) is one of the most important components in machine learning systems. However, this problem does not care about diversity, although result diversification can improve user satisfaction. This paper hence considers a new problem, namely the categorical diversity-aware IPS problem, in which users can select preferable categories. Exactly solving this problem needs O(n) time, where n is the number of vectors, and is not efficient for large n. We hence propose an approximation algorithm that has a probabilistic success guarantee and runs in sub-linear time to n. We conduct extensive experiments on real datasets, and the results demonstrate the superior performance of our algorithm to that of a baseline using an existing MIPS technique.
引用
下载
收藏
页码:2586 / 2596
页数:11
相关论文
共 50 条
  • [1] Solving Diversity-Aware Maximum Inner Product Search Efficiently and Effectively
    Hirata, Kohei
    Amagata, Daichi
    Hara, Takahiro
    Fujita, Sumio
    PROCEEDINGS OF THE 16TH ACM CONFERENCE ON RECOMMENDER SYSTEMS, RECSYS 2022, 2022, : 198 - 207
  • [2] An Architecture for Diversity-aware Search for Medical Web Content
    Denecke, K.
    METHODS OF INFORMATION IN MEDICINE, 2012, 51 (06) : 549 - 556
  • [3] Diversity-aware population modeling
    Nature Computational Science, 2025, 5 (3): : 194 - 195
  • [4] Diversity-aware retrieval of medical records
    Li, Jianqiang
    Liu, Chunchen
    Liu, Bo
    Mao, Rui
    Wang, Yongcai
    Chen, Shi
    Yang, Ji-Jiang
    Pan, Hui
    Wang, Qing
    COMPUTERS IN INDUSTRY, 2015, 69 : 81 - 91
  • [5] Diversity-Aware Meta Visual Prompting
    Huang, Qidong
    Dong, Xiaoyi
    Chen, Dongdong
    Hang, Weiming
    Wang, Feifei
    Hua, Gang
    Yu, Nenghai
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 10878 - 10887
  • [6] Diversity-aware Deep Ranking Network for Recommendation
    Wang, Zihong
    Shao, Yingxia
    He, Jiyuan
    Liu, Jinbao
    Xiao, Shitao
    Feng, Tao
    Liu, Ming
    PROCEEDINGS OF THE 32ND ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2023, 2023, : 2564 - 2573
  • [7] Diversity-Aware Entity Exploration on Knowledge Graph
    Zheng, Liang
    Liu, Shuo
    Song, Zhuofei
    Dou, Fangtong
    IEEE ACCESS, 2021, 9 : 118782 - 118793
  • [8] DivBO: Diversity-aware CASH for Ensemble Learning
    Shen, Yu
    Lu, Yupeng
    Li, Yang
    Tu, Yaofeng
    Zhang, Wentao
    Cui, Bin
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [9] Productive fitness in diversity-aware evolutionary algorithms
    Thomas Gabor
    Thomy Phan
    Claudia Linnhoff-Popien
    Natural Computing, 2021, 20 : 363 - 376
  • [10] Diversity-Aware Anonymization for Structured Health Data
    Aminifar, Amin
    Rabbi, Fazle
    Pun, Violet Ka, I
    Lamo, Yngve
    2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC), 2021, : 2148 - 2154