A fully adaptive explicit stabilized integrator for advection-diffusion-reaction problems

被引:1
|
作者
Almuslimani, Ibrahim [1 ]
机构
[1] Univ Rennes, INRIA Rennes, IRMAR UMR 6625, F-35000 Rennes, France
关键词
Advection-diffusion-reaction equations; Explicit stabilized methods; Runge-Kutta-Chebyshev methods; RKC; SK-ROCK; ARKC; RUNGE-KUTTA METHODS; CHEBYSHEV METHODS; STIFF; RKC;
D O I
10.1007/s10543-023-00945-3
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
A novel second order family of explicit stabilized Runge-Kutta-Chebyshev methods for advection-diffusion-reaction equations is introduced. The new methods outperform existing schemes for relatively high Peclet number due to their favorable stability properties and explicitly available coefficients. The construction of the new schemes is based on stabilization using second kind Chebyshev polynomials first used in the construction of the stochastic integrator SK-ROCK. An adaptive algorithm to implement the new scheme is proposed. This algorithm is able to automatically select the suitable step size, number of stages, and damping parameter at each integration step. Numerical experiments that illustrate the efficiency of the new algorithm are presented.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] A fully adaptive explicit stabilized integrator for advection–diffusion–reaction problems
    Ibrahim Almuslimani
    [J]. BIT Numerical Mathematics, 2023, 63
  • [2] An adaptive stabilized method for advection-diffusion-reaction equation
    Araya, Rodolfo
    Aguayo, Jorge
    Munoz, Santiago
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 376
  • [3] The LEM exponential integrator for advection-diffusion-reaction equations
    Caliari, Marco
    Vianello, Marco
    Bergamaschi, Luca
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 210 (1-2) : 56 - 63
  • [4] DISCONTINUOUS GALERKIN METHODS FOR ADVECTION-DIFFUSION-REACTION PROBLEMS
    Ayuso, Blanca
    Marini, L. Donatella
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (02) : 1391 - 1420
  • [5] Combining adjoint stabilized methods for the advection-diffusion-reaction problem
    Hauke, Guillermo
    Sangalli, Giancarlo
    Doweidar, Mohamed H.
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2007, 17 (02): : 305 - 326
  • [6] Automatically adaptive, stabilized finite element method via residual minimization for heterogeneous, anisotropic advection-diffusion-reaction problems
    Cier, Roberto J.
    Rojas, Sergio
    Calo, Victor M.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2021, 385
  • [7] Hierarchical Model Reduction for Advection-Diffusion-Reaction Problems
    Ern, A.
    Perotto, S.
    Veneziani, A.
    [J]. NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS, 2008, : 703 - +
  • [8] Finite element and isogeometric stabilized methods for the advection-diffusion-reaction equation
    Key, Konstantin
    Abdelmalik, Michael R. A.
    Elgeti, Stefanie
    Hughes, Thomas J. R.
    Baidoo, Frimpong A.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2023, 417
  • [9] A simple subgrid scale stabilized method for the advection-diffusion-reaction equation
    Hauke, G
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2002, 191 (27-28) : 2925 - 2947
  • [10] A new stabilized finite element method for advection-diffusion-reaction equations
    Duan, Huoyuan
    Qiu, Fengjuan
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2016, 32 (02) : 616 - 645