Online Convex Optimization of Programmable Quantum Computers to Simulate Time-Varying Quantum Channels

被引:0
|
作者
Chittoor, Hari Hara Suthan [1 ]
Simeone, Osvaldo [1 ]
Banchi, Leonardo [2 ,3 ]
Pirandola, Stefano [4 ]
机构
[1] Kings Coll London, Kings Commun Learning & Informat Proc KCLIP Lab, Dept Engn, London, England
[2] Univ Florence, Dept Phys & Astron, Florence, Italy
[3] INFN, Sez Firenze, Via G Sansone 1, I-50019 Sesto Fiorentino, FI, Italy
[4] Univ York, Dept Comp Sci, York YO10 5GH, England
基金
英国工程与自然科学研究理事会; 欧洲研究理事会;
关键词
Programmable quantum computing; convex optimization; online learning; quantum channel simulation;
D O I
10.1109/ITW55543.2023.10161641
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Simulating quantum channels is a fundamental primitive in quantum computing, since quantum channels define general (trace-preserving) quantum operations. An arbitrary quantum channel cannot be exactly simulated using a finite-dimensional programmable quantum processor, making it important to develop optimal approximate simulation techniques. In this paper, we study the challenging setting in which the channel to be simulated varies adversarially with time. We propose the use of matrix exponentiated gradient descent (MEGD), an online convex optimization method, and analytically show that it achieves a sublinear regret in time. Through experiments, we validate the main results for time-varying dephasing channels using a programmable generalized teleportation processor.
引用
收藏
页码:175 / 180
页数:6
相关论文
共 50 条
  • [1] Convex optimization of programmable quantum computers
    Banchi, Leonardo
    Pereira, Jason
    Lloyd, Seth
    Pirandola, Stefano
    [J]. NPJ QUANTUM INFORMATION, 2020, 6 (01)
  • [2] Convex optimization of programmable quantum computers
    Leonardo Banchi
    Jason Pereira
    Seth Lloyd
    Stefano Pirandola
    [J]. npj Quantum Information, 6
  • [3] Quantum outage probability for time-varying quantum channels
    Etxezarreta Martinez, Josu
    Fuentes, Patricio
    Crespo, Pedro M.
    Garcia-Frias, Javier
    [J]. PHYSICAL REVIEW A, 2022, 105 (01)
  • [4] Online Convex Optimization With Time-Varying Constraints and Bandit Feedback
    Cao, Xuanyu
    Liu, K. J. Ray
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2019, 64 (07) : 2665 - 2680
  • [5] On the Time-Varying Constraints and Bandit Feedback of Online Convex Optimization
    Cao, Xuanyu
    Liu, K. J. Ray
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2018,
  • [6] Distributed Online Convex Optimization on Time-Varying Directed Graphs
    Akbari, Mohammad
    Gharesifard, Bahman
    Linder, Tamas
    [J]. IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, 2017, 4 (03): : 417 - 428
  • [7] Distributed Online Convex Optimization With Time-Varying Coupled Inequality Constraints
    Yi, Xinlei
    Li, Xiuxian
    Xie, Lihua
    Johansson, Karl H.
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2020, 68 : 731 - 746
  • [8] Online Proximal-ADMM for Time-Varying Constrained Convex Optimization
    Zhang, Yijian
    Dall'Anese, Emiliano
    Hong, Mingyi
    [J]. IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, 2021, 7 : 144 - 155
  • [9] Augmented Lagrangian Methods for Time-Varying Constrained Online Convex Optimization
    Liu, Hao-Yang
    Xiao, Xian-Tao
    Zhang, Li-Wei
    [J]. JOURNAL OF THE OPERATIONS RESEARCH SOCIETY OF CHINA, 2023,
  • [10] Multiqubit time-varying quantum channels for NISQ-era superconducting quantum processors
    Martinez, Josu Etxezarreta
    Fuentes, Patricio
    iOlius, Antonio deMarti
    Garcia-Frias, Javier
    Fonollosa, Javier Rodriguez
    Crespo, Pedro M.
    [J]. PHYSICAL REVIEW RESEARCH, 2023, 5 (03):