Genome-enabled prediction of indicator traits of resistance to gastrointestinal nematodes in sheep using parametric models and artificial neural networks

被引:0
|
作者
Freitas, L. A. [1 ,2 ]
Savegnago, R. P.
Alves, A. A. C. [2 ]
Stafuzza, N. B. [4 ]
Pedrosa, V. B. [3 ]
Rocha, R. A. [5 ]
Rosa, G. J. M. [2 ]
Paz, C. C. P. [1 ,6 ]
机构
[1] Univ Sao Paulo, Dept Genet, BR-14049900 Ribeirao Preto, SP, Brazil
[2] Univ Wisconsin, Dept Anim & Dairy Sci, Madison, WI 53706 USA
[3] Michigan State Univ, Dept Anim Sci, E Lansing, MI 48864 USA
[4] Anim Sci Inst, Sustainable Livestock Res Ctr, BR-15130000 Sao Jose Do Rio Preto, SP, Brazil
[5] Univ Estadual Ponta Grossa, BR-84030900 Ponta Grossa, PR, Brazil
[6] Anim Sci Inst, Sustainable Livestock Res Ctr, BR-15130000 Sao Jose Do Rio Preto, SP, Brazil
关键词
Bayesian alphabet; Genomic selection; Machine learning; Ovis aries; Predictive ability; MACHINE LEARNING-METHODS; SELECTION; RESILIENCE; SUSCEPTIBILITY; REGRESSION; ACCURACY; ANIMALS;
D O I
10.1016/j.rvsc.2023.105099
中图分类号
S85 [动物医学(兽医学)];
学科分类号
0906 ;
摘要
This study aimed to assess the predictive ability of parametric models and artificial neural network method for genomic prediction of the following indicator traits of resistance to gastrointestinal nematodes in Santa Ines sheep: packed cell volume (PCV), fecal egg count (FEC), and Famacha (c) method (FAM). After quality control, the number of genotyped animals was 551 (PCV), 548 (FEC), and 565 (FAM), and 41,676 SNP. The average prediction accuracy (ACC) calculated by Pearson correlation between observed and predicted values and mean squared errors (MSE) were obtained using genomic best unbiased linear predictor (GBLUP), BayesA, BayesB, Bayesian least absolute shrinkage and selection operator (BLASSO), and Bayesian regularized artificial neural network (three and four hidden neurons, BRANN_3 and BRANN_4, respectively) in a 5-fold cross-validation technique. The average ACC varied from moderate to high according to the trait and models, ranging between 0.418 and 0.546 (PCV), between 0.646 and 0.793 (FEC), and between 0.414 and 0.519 (FAM). Parametric models presented nearly the same ACC and MSE for the studied traits and provided better accuracies than BRANN. The GBLUP, BayesA, BayesB and BLASSO models provided better accuracies than the BRANN_3 method, increasing by around 23% for PCV, and 18.5% for FEC. In conclusion, parametric models are suitable for genome-enabled prediction of indicator traits of resistance to gastrointestinal nematodes in sheep. Due to the small differences in accuracy found between them, the use of the GBLUP model is recommended due to its lower computational costs.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Genome-enabled prediction of genetic values of growth traits using artificial neural networks
    Peters, S. O.
    Sinecen, M.
    Thomas, M. G.
    Imumorin, I. G.
    Kizilkaya, K.
    [J]. JOURNAL OF ANIMAL SCIENCE, 2016, 94 : 151 - 152
  • [2] Application of artificial neural networks to genome-enabled prediction of growth traits in Brangus heifers.
    Peters, S. O.
    Sinecen, M.
    Kizilkaya, K.
    Thomas, M.
    [J]. JOURNAL OF ANIMAL SCIENCE, 2016, 94 : 34 - 34
  • [3] Genome-enabled prediction of reproductive traits in Nellore cattle using parametric models and machine learning methods
    Alves, A. A. C.
    Espigolan, R.
    Bresolin, T.
    Costa, R. M.
    Fernandes Junior, G. A.
    Ventura, R. V.
    Carvalheiro, R.
    Albuquerque, L. G.
    [J]. ANIMAL GENETICS, 2021, 52 (01) : 32 - 46
  • [4] Genome-Enabled Prediction Models for Yield Related Traits in Chickpea
    Roorkiwal, Manish
    Rathore, Abhishek
    Das, Roma R.
    Singh, Muneendra K.
    Jain, Ankit
    Srinivasan, Samineni
    Gaur, Pooran M.
    Chellapilla, Bharadwaj
    Tripathi, Shailesh
    Li, Yongle
    Hickey, John M.
    Lorenz, Aaron
    Sutton, Tim
    Crossa, Jose
    Jannink, Jean-Luc
    Varshney, Rajeev K.
    [J]. FRONTIERS IN PLANT SCIENCE, 2016, 7
  • [5] Genome-enabled prediction using probabilistic neural network classifiers
    Juan Manuel González-Camacho
    José Crossa
    Paulino Pérez-Rodríguez
    Leonardo Ornella
    Daniel Gianola
    [J]. BMC Genomics, 17
  • [6] Genome-enabled prediction of genetic values using radial basis function neural networks
    J. M. González-Camacho
    G. de los Campos
    P. Pérez
    D. Gianola
    J. E. Cairns
    G. Mahuku
    R. Babu
    J. Crossa
    [J]. Theoretical and Applied Genetics, 2012, 125 : 759 - 771
  • [7] Genome-enabled prediction of genetic values using radial basis function neural networks
    Gonzalez-Camacho, J. M.
    de los Campos, G.
    Perez, P.
    Gianola, D.
    Cairns, J. E.
    Mahuku, G.
    Babu, R.
    Crossa, J.
    [J]. THEORETICAL AND APPLIED GENETICS, 2012, 125 (04) : 759 - 771
  • [8] Genome-enabled prediction using probabilistic neural network classifiers
    Manuel Gonzalez-Camacho, Juan
    Crossa, Jose
    Perez-Rodriguez, Paulino
    Ornella, Leonardo
    Gianola, Daniel
    [J]. BMC GENOMICS, 2016, 17
  • [9] Genome-enabled prediction of quantitative traits in chickens using genomic annotation
    Gota Morota
    Rostam Abdollahi-Arpanahi
    Andreas Kranis
    Daniel Gianola
    [J]. BMC Genomics, 15
  • [10] Threshold Models for Genome-Enabled Prediction of Ordinal Categorical Traits in Plant Breeding
    Montesinos-Lopez, Osval A.
    Montesinos-Lopez, Abelardo
    Perez-Rodriguez, Paulino
    de los Campos, Gustavo
    Eskridge, Kent
    Crossa, Jose
    [J]. G3-GENES GENOMES GENETICS, 2015, 5 (02): : 291 - 300