A Trigonometric Quintic B-Spline Basis Collocation Method for the KdV-Kawahara Equation

被引:2
|
作者
Karaagac, B. [1 ]
Esen, A. [2 ]
Owolabi, K. M. [3 ]
Pindza, E. [4 ,5 ]
机构
[1] Adiyaman Univ, Dept Math Educ, Adiyaman, Turkiye
[2] Inonu Univ, Dept Math, Malatya, Turkiye
[3] Fed Univ Technol Akure, Dept Math Sci, Akure, Ondo, Nigeria
[4] Univ Pretoria, Dept Math & Appl Math, Pretoria, South Africa
[5] Tshwane Univ Technol, Dept Math & Stat, Pretoria, South Africa
关键词
KdV-Kawahara equation; collocation method; trigonometric quintic B-spline basis; stability; BURGERS-EQUATION; RLW;
D O I
10.1134/S1995423923030035
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper considers an effective numerical collocation method for numerical solution of the KdV-Kawahara equation. This numerical method relies on a finite element formulation and spline interpolation with a trigonometric quintic B-spline basis. First, the KdV-Kawahara equation is reduced to a coupled equation via an auxiliary variable of the form v = u(xxx). The collocation method is then applied to the coupled equation together with the forward difference and the Crank-Nicholson formula. This results in a systemof algebraic equations in terms of time variables with the trigonometric quintic B-spline basis. For determination of the error between the numerical and exact solutions, the error norms L-2 and L-infinity are calculated. The results are illustrated by two numerical examples with their graphical representation and comparison with other methods.
引用
收藏
页码:216 / 228
页数:13
相关论文
共 50 条
  • [1] A Trigonometric Quintic B-Spline Basis Collocation Method for the KdV–Kawahara Equation
    B. Karaagac
    A. Esen
    K. M. Owolabi
    E. Pindza
    [J]. Numerical Analysis and Applications, 2023, 16 : 216 - 228
  • [2] Numerical solution by quintic B-spline collocation finite element method of generalized Rosenau–Kawahara equation
    Sibel Özer
    [J]. Mathematical Sciences, 2022, 16 : 213 - 224
  • [3] Numerical solution by quintic B-spline collocation finite element method of generalized Rosenau-Kawahara equation
    Ozer, Sibel
    [J]. MATHEMATICAL SCIENCES, 2022, 16 (03) : 213 - 224
  • [4] Quintic B-spline collocation method for the generalized nonlinear Schrodinger equation
    Irk, Dursun
    Dag, Idris
    [J]. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2011, 348 (02): : 378 - 392
  • [5] Solving Boussinesq Equation Using Quintic B-spline and Quintic Trigonometric B-spline Interpolation Methods
    Zakaria, Nur Fateha
    Abu Hassan, Nuraini
    Abd Hamid, Nur Nadiah
    Abd Majid, Ahmad
    Ismail, Ahmad Izani Md.
    [J]. 4TH INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCES (ICMS4): MATHEMATICAL SCIENCES: CHAMPIONING THE WAY IN A PROBLEM BASED AND DATA DRIVEN SOCIETY, 2017, 1830
  • [6] Quintic B-spline collocation method for numerical solution of the RLW equation
    Saka, Buelent
    Dag, Idris
    Irk, Dursun
    [J]. ANZIAM JOURNAL, 2008, 49 (03): : 389 - 410
  • [7] EXTENDED B-SPLINE COLLOCATION METHOD FOR KDV-BURGERS EQUATION
    Hepson, O. E.
    Korkmaz, A.
    Dag, I
    [J]. TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2019, 9 (02): : 267 - 278
  • [8] Taylor collocation method for the numerical solution of the nonlinear Schrodinger equation using quintic B-spline basis
    Aksoy, A. M.
    Irk, D.
    Dag, I.
    [J]. PHYSICS OF WAVE PHENOMENA, 2012, 20 (01) : 67 - 79
  • [9] Application of sextic B-spline collocation method for solving inverse the modified Kawahara equation
    Torabi, Fateme
    Pourgholi, Reza
    [J]. INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2023, 54 (02): : 649 - 662
  • [10] Numerical solution of the Rosenau equation using quintic collocation B-spline method
    Abazari, Rasoul
    Abazari, Reza
    [J]. IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2015, 39 (A3): : 281 - 288