Higher uniformity of bounded multiplicative functions in short intervals on average

被引:5
|
作者
Matomaeki, Kaisa [1 ]
Radziwill, Maksym [2 ]
Tao, Terence [3 ]
Teraevaeinen, Joni [4 ,5 ]
Ziegler, Tamar [6 ]
机构
[1] Univ Turku, Dept Math & Stat, Turku 20014, Finland
[2] CALTECH, Dept Math, 1200 Calif BLVD, Pasadena, CA 91125 USA
[3] UCLA, Dept Math, 405 Hilgard Ave, Los Angeles, CA 90095 USA
[4] Univ Oxford, Math Inst, Woodstock Rd, Oxford OX2 6GG, England
[5] Univ Turku, Dept Math & Stat, Turku 20014, Finland
[6] Hebrew Univ Jerusalem, Einstein Inst Math, Edmond J Safra Campus, IL-91904 Jerusalem, Israel
基金
芬兰科学院;
关键词
Chowla conjecture; Gowers uniformity; Liouville function; nilsequences; sign patterns; INVERSE THEOREM; ORBITS; PRIMES; CHOWLA;
D O I
10.4007/annals.2023.197.2.3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let lambda denote the Liouville function. We show that, as X-+ oo,2X Zsup X P(Y)ER[Y] degP 0 < theta < 1 fiixed but arbitrarily small. Previously this was only established for k < 1. We obtain this result as a special case of the corresponding statement for (non-pretentious) 1 -bounded multiplicative functions that we prove.In fact, we are able to replace the polynomial phases e(-P (n)) by degree k nilsequences F(g(n)Gamma). By the inverse theory for the Gowers norms this implies the higher order asymptotic uniformity result ZX in the same range of H.We present applications of this result to patterns of various types in the Liouville sequence. Firstly, we show that the number of sign patterns of the Liouville function is superpolynomial, making progress on a conjecture of Sarnak about the Liouville sequence having positive entropy. Secondly, we obtain cancellation in averages of lambda over short polynomial progressions (n + P1(m), ... , n + Pk(m)), which in the case of linear polynomials yields a new averaged version of Chowla's conjecture.We are in fact able to prove our results on polynomial phases in the wider range H > exp((log X)5/8+epsilon), thus strengthening also previous work on the Fourier uniformity of the Liouville function. 2X l lambda lUk+1([x,x+H]) dx = o(X)
引用
收藏
页码:739 / 857
页数:119
相关论文
共 50 条
  • [1] Fourier uniformity of bounded multiplicative functions in short intervals on average
    Matomaki, Kaisa
    Radziwill, Maksym
    Tao, Terence
    INVENTIONES MATHEMATICAE, 2020, 220 (01) : 1 - 58
  • [2] Fourier uniformity of bounded multiplicative functions in short intervals on average
    Kaisa Matomäki
    Maksym Radziwiłł
    Terence Tao
    Inventiones mathematicae, 2020, 220 : 1 - 58
  • [3] Divisor-bounded multiplicative functions in short intervals
    Alexander P. Mangerel
    Research in the Mathematical Sciences, 2023, 10
  • [4] Divisor-bounded multiplicative functions in short intervals
    Centre de Recherches Mathématiques, Université de Montréal, Montréal
    QC, Canada
    arXiv, 2021,
  • [5] Divisor-bounded multiplicative functions in short intervals
    Mangerel, Alexander P.
    RESEARCH IN THE MATHEMATICAL SCIENCES, 2023, 10 (01)
  • [6] Higher uniformity of arithmetic functions in short intervals I. All intervals
    Matomaki, Kaisa
    Shao, Xuancheng
    Tao, Terence
    Teravainen, Joni
    FORUM OF MATHEMATICS PI, 2023, 11
  • [7] Multiplicative functions in short intervals
    Matomaki, Kaisa
    Radziwill, Maksym
    ANNALS OF MATHEMATICS, 2016, 183 (03) : 1015 - 1056
  • [8] MULTIPLICATIVE FUNCTIONS IN SHORT INTERVALS
    HILDEBRAND, A
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1987, 39 (03): : 646 - 672
  • [9] MULTIPLICATIVE FUNCTIONS ON SHORT INTERVALS
    ERDOS, P
    INDLEKOFER, KH
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1987, 381 : 148 - 160
  • [10] ON VALUES OF MULTIPLICATIVE FUNCTIONS IN SHORT INTERVALS
    KATAI, I
    MATHEMATISCHE ANNALEN, 1969, 183 (03) : 181 - &