Ultrasound molecular imaging for early detection of acute renal ischemia-reperfusion injury

被引:1
|
作者
Ren, Ling [1 ,2 ,3 ]
Zhao, Yuzhuo [2 ]
Wang, Tiantian [3 ]
Tong, Yan [3 ]
Zhao, Ping [2 ]
Nie, Fang [1 ]
Luo, Yukun [1 ,2 ,4 ]
Zhu, Lianhua [2 ,4 ]
机构
[1] Lanzhou Univ, Clin Med Coll 2, Lanzhou, Gansu, Peoples R China
[2] Chinese Peoples Liberat Army Gen Hosp, Med Ctr 1, Dept Ultrasound, Beijing, Peoples R China
[3] Chinese Peoples Liberat Army Gen Hosp, Nephrol Inst Chinese Peoples Liberat Army, Dept Nephrol,Beijing Key Lab Kidney Dis Res,Med Ct, State Key Lab Kidney Dis,Natl Clin Res Ctr Kidney, Beijing, Peoples R China
[4] Chinese Peoples Liberat Army Gen Hosp, Med Ctr 1, Dept Ultrasound, 28 Fuxing Rd, Beijing 100853, Peoples R China
关键词
acute kidney injury; inflammation; ischemia-reperfusion injury; microcirculation; ultrasound molecular imaging; vascular cell adhesion molecule-1; CONTRAST-ENHANCED ULTRASOUND; ACUTE KIDNEY INJURY; QUANTITATIVE-EVALUATION; BIOMARKERS; MODEL;
D O I
10.1002/btm2.10638
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Microcirculatory perfusion disorder and inflammatory response are critical links in acute kidney injury (AKI). We aim to construct anti-vascular cell adhesion molecule-1(VCAM-1) targeted microbubbles (TM) to monitor renal microcirculatory perfusion and inflammatory response. Methods: TM carrying VCAM-1 polypeptide was constructed by biological coupling. The binding ability of TM to human umbilical vein endothelial cells (HUVECs) was detected. Bilateral renal ischemia-reperfusion injury (IRI) models of mice were established to evaluate microcirculatory perfusion and inflammatory response using TM. Thirty-six mice were randomly divided into six groups according to the different reperfusion time (0.5, 2, 6, 12, and 24 h) and sham-operated group (Sham group). The correlation of TM imaging with serum and histopathological biomarkers was investigated. Results: TM has advantages such as uniform distribution, regular shape, high stability, and good biosafety. TM could bind specifically to VCAM-1 molecule expressed by tumor necrosis factor-alpha (TNF-alpha)-treated HUVECs. In the renal IRI-AKI model, the area under the curve (AUC) of TM significantly decreased both in the renal cortical and medullary after 2 h of reperfusion compared with the Sham group (p < 0.05). Normalized intensity difference (NID) of TM at different reperfusion time was all higher than that of blank microbubbles (BM) and the Sham group (p < 0.05). Ultrasound molecular imaging of TM could detect AKI early before commonly used renal function markers, histopathological biomarkers, and BM imaging. AUC of TM was negatively correlated with serum creatinine (Scr), blood urea nitrogen (BUN), and Cystatin C (Cys-C) levels, and NID of TM was linearly correlated with VCAM-1, TNF-alpha, and interleukin-6 (IL-6) expression (p < 0.05). Conclusions: Ultrasound molecular imaging based on TM carrying VCAM-1 polypeptide can accurately evaluate the changes in renal microcirculatory perfusion and inflammatory response, which might be a promising modality for early diagnosis of AKI.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Renal oxygenation in acute renal ischemia-reperfusion injury
    Abdelkader, Amany
    Ho, Julie
    Ow, Connie P. C.
    Eppel, Gabriela A.
    Rajapakse, Niwanthi W.
    Schlaich, Markus P.
    Evans, Roger G.
    AMERICAN JOURNAL OF PHYSIOLOGY-RENAL PHYSIOLOGY, 2014, 306 (09) : F1026 - F1038
  • [2] Ultrasound Imaging Based on Molecular Targeting for Quantitative Evaluation of Hepatic Ischemia-Reperfusion Injury
    Qiu, C.
    Yin, T.
    Zhang, Y.
    Lian, Y.
    You, Y.
    Wang, K.
    Zheng, R.
    Shuai, X.
    AMERICAN JOURNAL OF TRANSPLANTATION, 2017, 17 (12) : 3087 - 3097
  • [3] Early Assessment of Renal Ischemia-Reperfusion Injury with Hyperpolarized MRI
    Aufhauser, David
    Pourfathi, Mehrdad
    Murken, Douglas
    Concors, Seth
    Wang, Zhonglin
    Ge, Guanghui
    Naji, Ali
    Hancock, Wayne
    Rizi, Rahim
    Levine, Matthew
    AMERICAN JOURNAL OF TRANSPLANTATION, 2018, 18 : 44 - 45
  • [4] Complement and renal ischemia-reperfusion injury
    Bonventre, JV
    AMERICAN JOURNAL OF KIDNEY DISEASES, 2001, 38 (02) : 430 - 433
  • [5] ATR1 receptor imaging with PET in renal acute ischemia-reperfusion injury model
    Gulaldi, Nedim
    Xia, Jinsong
    Hong, Kelvin
    Ruben, Dawn
    Vranesic, Melin
    Mathews, William
    Szabo, Zsolt
    JOURNAL OF NUCLEAR MEDICINE, 2009, 50
  • [6] Neutrophils and acute ischemia-reperfusion injury
    De Greef, KE
    Ysebaert, DK
    Ghielli, M
    Vercauteren, S
    Nouwen, EJ
    Eyskens, EJ
    De Broe, ME
    JOURNAL OF NEPHROLOGY, 1998, 11 (03) : 110 - 122
  • [7] Pentoxifylline (PTX) ameliorates acute renal ischemia-reperfusion (IR) injury
    Grande, Joseph Peter
    Cheng, Jingfei
    Yin, Ping
    FASEB JOURNAL, 2010, 24
  • [8] Bilateral Renal Ischemia-Reperfusion Model for Acute Kidney Injury in Mice
    Wang, Junni
    Zhu, Huanhuan
    Miao, Jin
    Lin, Weiqiang
    Han, Fei
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2024, (204):
  • [9] Cellular and molecular mechanisms of sex differences in renal ischemia-reperfusion injury
    Kher, A
    Meldrum, KK
    Wang, MJ
    Tsai, BM
    Pitcher, JA
    Meldrum, DR
    CARDIOVASCULAR RESEARCH, 2005, 67 (04) : 594 - 603
  • [10] Thymoquinone Ameliorates Acute Kidney Injury Induced by Renal Ischemia-Reperfusion
    Ashour, Hend
    Rashed, Laila
    Elkordy, Miran Atif
    Abdelwahed, Omaima Mohammed
    INTERNATIONAL JOURNAL OF MORPHOLOGY, 2021, 39 (02): : 469 - 476