Time-optimal universal quantum gates on superconducting circuits

被引:4
|
作者
Li, Ze [1 ,2 ]
Liang, Ming-Jie [1 ,2 ]
Xue, Zheng-Yuan [1 ,2 ,3 ,4 ]
机构
[1] South China Normal Univ, Guangdong Basic Res Ctr Excellence Struct & Fundam, Key Lab Atom & Subatom Struct & Quantum Control, Minist Educ, Guangzhou 510006, Peoples R China
[2] South China Normal Univ, Sch Phys, Guangzhou 510006, Peoples R China
[3] South China Normal Univ, Guangdong Prov Key Lab Quantum Engn & Quantum Mat, Guangdong Hong Kong Joint Lab Quantum Matter, Guangzhou 510006, Peoples R China
[4] South China Normal Univ, Frontier Res Inst Phys, Guangzhou 510006, Peoples R China
基金
中国国家自然科学基金;
关键词
Compilation and indexing terms; Copyright 2025 Elsevier Inc;
D O I
10.1103/PhysRevA.108.042617
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Decoherence is inevitable when manipulating quantum systems. It decreases the quality of quantum manipulations and thus is one of the main obstacles for large-scale quantum computation, where high-fidelity quantum gates are needed. Generally, the longer a gate operation is, the more decoherence-induced gate infidelity will be. Therefore, how to shorten the gate time becomes an urgent problem to be solved. To this end, time-optimal control based on solving the quantum brachistochrone equation is a straightforward solution. Here, based on time-optimal control, we propose a scheme to realize universal quantum gates on superconducting qubits in a two-dimensional square lattice configuration, and the two-qubit gate fidelity approaches 99.9%. Meanwhile, we can further accelerate the Z-axis gate considerably by adjusting the detuning of the external driving. Finally, in order to reduce the influence of the dephasing error, decoherence-free subspace encoding is also incorporated in our physical implementation. Therefore, we present a fast quantum scheme which is promising for large-scale quantum computation.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Universal holonomic quantum gates in decoherence-free subspace on superconducting circuits
    Xue, Zheng-Yuan
    Zhou, Jian
    Wang, Z. D.
    PHYSICAL REVIEW A, 2015, 92 (02):
  • [2] Errors of quantum gates in superconducting quantum circuits
    Song, ZiXuan
    Luo, Kai
    Xiang, Liang
    Cui, JiangYu
    Guo, QiuJiang
    Yung, ManHong
    SCIENTIA SINICA-PHYSICA MECHANICA & ASTRONOMICA, 2025, 55 (04)
  • [3] Realization of high-fidelity and robust geometric gates with time-optimal control technique in superconducting quantum circuit
    Wang, Zhimin
    Ma, Zhuang
    Yu, Xiangmin
    Zheng, Wen
    Zhou, Kun
    Zhang, Yujia
    Zhang, Yu
    Lan, Dong
    Zhao, Jie
    Tan, Xinsheng
    Li, Shaoxiong
    Yu, Yang
    CHINESE PHYSICS B, 2023, 32 (10)
  • [4] Realization of high-fidelity and robust geometric gates with time-optimal control technique in superconducting quantum circuit
    王治旻
    马壮
    喻祥敏
    郑文
    周坤
    张宇佳
    张钰
    兰栋
    赵杰
    谭新生
    李邵雄
    于扬
    Chinese Physics B, 2023, 32 (10) : 244 - 248
  • [5] Electric circuits for universal quantum gates and quantum Fourier transformation
    Ezawa, Motohiko
    PHYSICAL REVIEW RESEARCH, 2020, 2 (02):
  • [6] Optimal quantum cloning and universal NOT without quantum gates
    Simon, Christoph
    Weihs, Gregor
    Zeilinger, Anton
    Journal of Modern Optics, 2000, 47 (2-3 SPEC.) : 233 - 246
  • [7] Optimal quantum cloning and universal NOT without quantum gates
    Simon, C
    Weihs, G
    Zeilinger, A
    JOURNAL OF MODERN OPTICS, 2000, 47 (2-3) : 233 - 246
  • [8] On the design of molecular excitonic circuits for quantum computing: the universal quantum gates
    Castellanos, Maria A.
    Dodin, Amro
    Willard, Adam P.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2020, 22 (05) : 3048 - 3057
  • [9] Optimal control of universal quantum gates in a double quantum dot
    Castelano, Leonardo K.
    de Lima, Emanuel F.
    Madureira, Justino R.
    Degani, Marcos H.
    Maialle, Marcelo Z.
    PHYSICAL REVIEW B, 2018, 97 (23)
  • [10] Universal gates for protected superconducting qubits using optimal control
    Abdelhafez, Mohamed
    Baker, Brian
    Gyenis, Andras
    Mundada, Pranav
    Houck, Andrew A.
    Schuster, David
    Koch, Jens
    PHYSICAL REVIEW A, 2020, 101 (02)