Ultraviolet-Induced Gas Sensing Performance of Ag/WO3/rGO Nanocomposites for H2S Gas Sensors

被引:16
|
作者
Gui, Yanghai [1 ]
Wu, Jintao [1 ]
Tian, Kuan [1 ]
Guo, Huishi [1 ]
Qin, Xiaoyun [1 ]
Qin, Xiaomei [1 ]
Guo, Xiang [2 ]
Fang, Canxiang [2 ]
Liu, Peng [3 ]
机构
[1] Zhengzhou Univ Light Ind, Coll Mat & Chem Engn, Zhengzhou 450000, Peoples R China
[2] Hubei Inst Aerosp Chemotechnol, Sci & Technol Aerosp Chem Power Lab, Wuhan 441003, Peoples R China
[3] Huazhong Univ Sci & Technol, Sch Chem & Chem Engn, Serv Failure, Hubei Key Lab Mat Chem, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
WO3; rGO; Ag doping; H2S gas sensor; ultraviolet-induced; gas-liquidinterfacial; NANOPARTICLES; FABRICATION;
D O I
10.1021/acsaelm.3c00349
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The attention toward cost-effective and high-performanceH(2)S sensors is increasing due to the growing need for physicalhealth and environmental monitoring. In this paper, Ag/WO3/reduced graphene oxide (rGO) nanocomposites were synthesized byusing a microwave-assisted gas-liquid interfacial method. Nanomaterialswith different Ag doping contents were successfully prepared withAgNO(3) as an additive. The Ag/WO3/rGO sensorsexhibit remarkable selectivity toward H2S, and the gassensing performances of Ag-doped WO3/rGO gas sensors aresignificantly better than those of WO3/rGO. At 150 & DEG;C,the response value of the 10 wt % Ag/WO3/rGO gas sensorto 100 ppm H2S is 204.5, which is 7 times higher than thatof WO3/rGO, and the response/recovery time of the sensoris 9/49 s, respectively. Additionally, the gas sensing performanceof the sensor is further enhanced under ultraviolet (UV) irradiation.The response value is enhanced to 685.8, which is 3 times higher thanthat without UV irradiation, and the response/recovery time is reducedto 8/38 s, respectively. The sensing mechanism is also discussed.This work offers a potential application for H2S detectionin environmental monitoring and smart healthcare.
引用
收藏
页码:3625 / 3633
页数:9
相关论文
共 50 条
  • [1] Study of WO3 based H2S gas sensors
    Wu, Zhengyuan
    Chen, Tao
    Qiu, Sichou
    Wu, Zhenghua
    Huazhong Ligong Daxue Xuebao/Journal Huazhong (Central China) University of Science and Technology, 27 (01): : 41 - 43
  • [2] Gas Sensing Performance and Mechanism of CuO(p)-WO3(n) Composites to H2S Gas
    Peng, Fang
    Sun, Yan
    Yu, Weiwei
    Lu, Yue
    Hao, Jiaming
    Cong, Rui
    Shi, Jichao
    Ge, Meiying
    Dai, Ning
    NANOMATERIALS, 2020, 10 (06) : 1 - 15
  • [3] H2S sensing properties of WO3 based gas sensor
    Urasinska-Wojcik, B.
    Vincent, T. A.
    Gardner, J. W.
    PROCEEDINGS OF THE 30TH ANNIVERSARY EUROSENSORS CONFERENCE - EUROSENSORS 2016, 2016, 168 : 255 - 258
  • [4] Gas sensing selectivity of hexagonal and monoclinic WO3 to H2S
    Szilagyi, Imre Miklos
    Saukko, Sami
    Mizsei, Janos
    Toth, Attila L.
    Madarasz, Janos
    Pokol, Gyorgy
    SOLID STATE SCIENCES, 2010, 12 (11) : 1857 - 1860
  • [5] SURFACE-CHEMISTRY OF GAS SENSORS - H2S ON WO3 FILMS
    DWYER, DJ
    SENSORS AND ACTUATORS B-CHEMICAL, 1991, 5 (1-4) : 155 - 159
  • [6] Surface chemistry of gas sensors. H2S on WO3 films
    Dwyer, D.J., 1600, (B5): : 1 - 4
  • [7] H2S gas sensing characteristics of WO3 thick-films
    Han, SD
    Singh, I
    Kim, HS
    Kim, ST
    Jung, YH
    Kim, BK
    INDIAN JOURNAL OF CHEMISTRY SECTION A-INORGANIC BIO-INORGANIC PHYSICAL THEORETICAL & ANALYTICAL CHEMISTRY, 2002, 41 (09): : 1832 - 1836
  • [8] H2S gas sensing, properties of CuO-functionalized WO3 nanowires
    Park, Suyoung
    Park, Sunghoon
    Jung, Jihwan
    Hong, Taeseop
    Lee, Sangmin
    Kim, Hyoun Woo
    Lee, Chongmu
    CERAMICS INTERNATIONAL, 2014, 40 (07) : 11051 - 11056
  • [9] Investigation of H2S gas sensing performance of Ni:WO3 films at room temperature: nickel precursor effect
    Er, Irmak Karaduman
    Sarf, Fatma
    Yakar, Emin
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2022, 33 (06) : 3397 - 3410
  • [10] Investigation of H2S gas sensing performance of Ni:WO3 films at room temperature: nickel precursor effect
    Irmak Karaduman Er
    Fatma Sarf
    Emin Yakar
    Journal of Materials Science: Materials in Electronics, 2022, 33 : 3397 - 3410