Robust Trajectory and Offloading for Energy-Efficient UAV Edge Computing in Industrial Internet of Things

被引:5
|
作者
Tang, Xiao [1 ,2 ]
Zhang, Hongrui [1 ]
Zhang, Ruonan [1 ]
Zhou, Deyun [1 ]
Zhang, Yan [3 ]
Han, Zhu [4 ,5 ]
机构
[1] Northwestern Polytech Univ, Sch Elect & Informat, Xian 710072, Peoples R China
[2] Southeast Univ, Natl Mobile Commun Res Lab, Nanjing 210096, Peoples R China
[3] Univ Oslo, Dept Informat, N-0316 Oslo, Norway
[4] Univ Houston, Dept Elect & Comp Engn, Houston, TX 77004 USA
[5] Kyung Hee Univ, Dept Comp Sci & Engn, Seoul 446701, South Korea
关键词
Edge computing; Industrial Internet of Things (IIoT); robust optimization; unmanned aerial vehicle (UAV); RESOURCE-ALLOCATION; JOINT RESOURCE; OPTIMIZATION; NETWORKS; COMMUNICATION;
D O I
10.1109/TII.2023.3256375
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Efficient data processing and computation are essential for the Industrial Internet of Things (IIoT) to empower various applications, which can be significantly bottlenecked by the limited energy capacity and computation capability of the IIoT nodes. In this article, we employ an unmanned aerial vehicle (UAV) as an edge server to assist IIoT data processing, while considering the practical issue of UAV jittering. Specifically, we propose a joint design on trajectory and offloading strategies to minimize energy consumption due to local and edge computation, as well as data transmission. We particularly address UAV jittering that induces Gaussian-distributed uncertainties associated with flying waypoints, resulting in probabilistic-form flying speed and data offloading constraints. We exploit the Bernstein-type inequality to reformulate the constraints in deterministic forms and decompose the energy minimization to solve for trajectory and offloading separately within an alternating optimization framework. The subproblems are then tackled with the successive convex approximation technique. Simulation results show that our proposal strictly guarantees robustness under uncertainties and effectively reduces energy consumption as compared with the baselines.
引用
下载
收藏
页码:38 / 49
页数:12
相关论文
共 50 条
  • [1] An Energy-Efficient Edge Offloading Scheme for UAV-Assisted Internet of Things
    Dai, Minghui
    Su, Zhou
    Li, Jiliang
    Zhou, Jian
    2020 IEEE 40TH INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING SYSTEMS (ICDCS), 2020, : 1293 - 1297
  • [2] Energy-efficient task offloading and trajectory planning in UAV-enabled mobile edge computing networks
    Li, Bin
    Liu, Wenshuai
    Xie, Wancheng
    Li, Xiaohui
    COMPUTER NETWORKS, 2023, 234
  • [3] Energy Efficient Dynamic Offloading in Mobile Edge Computing for Internet of Things
    Chen, Ying
    Zhang, Ning
    Zhang, Yongchao
    Chen, Xin
    Wu, Wen
    Shen, Xuemin
    IEEE TRANSACTIONS ON CLOUD COMPUTING, 2021, 9 (03) : 1050 - 1060
  • [4] Energy-Efficient Computation Offloading for Secure UAV-Edge-Computing Systems
    Bai, Tong
    Wang, Jingjing
    Ren, Yong
    Hanzo, Lajos
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2019, 68 (06) : 6074 - 6087
  • [5] Energy-efficient UAV-enabled computation offloading for industrial internet of things: a deep reinforcement learning approach
    Shi, Shuo
    Wang, Meng
    Gu, Shushi
    Zheng, Zhong
    WIRELESS NETWORKS, 2024, 30 (05) : 3921 - 3934
  • [6] Federated Deep Reinforcement Learning for Energy-Efficient Edge Computing Offloading and Resource Allocation in Industrial Internet
    Li, Xuehua
    Zhang, Jiuchuan
    Pan, Chunyu
    APPLIED SCIENCES-BASEL, 2023, 13 (11):
  • [7] UAV-Aided Energy-Efficient Edge Computing Networks: Security Offloading Optimization
    Gu, Xiaohui
    Zhang, Guoan
    Wang, Mingxing
    Duan, Wei
    Wen, Miaowen
    Ho, Pin-Han
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (06) : 4245 - 4258
  • [8] Energy-Efficient Collaborative Offloading in NOMA-Enabled Fog Computing for Internet of Things
    Feng, Weiyang
    Zhang, Ning
    Lin, Siyu
    Li, Shichao
    Wang, Zhe
    Ai, Bo
    Zhong, Zhangdui
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (15) : 13794 - 13807
  • [9] UAV-Assisted Computation Offloading Toward Energy-Efficient Blockchain Operations in Internet of Things
    Lan, Xunqiang
    Tang, Xiao
    Zhang, Ruonan
    Lin, Wensheng
    Han, Zhu
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2023, 12 (08) : 1469 - 1473
  • [10] Energy-efficient cooperative offloading for mobile edge computing
    Shi, Wenjun
    Wu, Jigang
    Chen, Long
    Zhang, Xinxiang
    Wu, Huaiguang
    WIRELESS NETWORKS, 2023, 29 (06) : 2419 - 2435