Machine learning-based mapping of band gaps for metal halide perovskites

被引:0
|
作者
Zhu, Xiemeng [1 ,2 ]
Xu, Jun [2 ]
Du, Shiyu [2 ]
Zhang, Yiming [2 ]
机构
[1] Ningbo Univ, Fac Elect Engn & Comp Sci, Ningbo 315211, Peoples R China
[2] Qianwan Inst CNiTECH, Engn Lab Adv Energy Mat, Ningbo, Peoples R China
基金
中国国家自然科学基金;
关键词
Metal halide perovskites; Band gap; Machine Learning; Mapping; Solar energy materials;
D O I
10.1016/j.matlet.2023.135590
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Recently, perovskite solar cells (PSCs) have received great attentions as the most promising candidate for the next generation solar cells; where the halide perovskite with ABX3 stoichiometry are playing as key components. As a key relevant parameter for various applications of perovskites, the band gap can be modified and optimized by tuning their compositions. In order to enhance the screening efficiency of perovskites with appropriate band gap range for particular applications, this work developed a mapping strategy for band gap range classification through data-driven selected features. This work demonstrates that the proposed features, and further the developed band gap maps, are able to offer a useful initial guiding principle for screenings of potential halide perovskites with fitting band gap ranges and provide opportunities for their compositional design.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Band Gaps of Hybrid Metal Halide Perovskites: Efficient Estimation
    Butorin, Sergei M.
    ACS APPLIED ENERGY MATERIALS, 2024, 7 (17): : 7285 - 7290
  • [2] Steric engineering of metal-halide perovskites with tunable optical band gaps
    Filip, Marina R.
    Eperon, Giles E.
    Snaith, Henry J.
    Giustino, Feliciano
    NATURE COMMUNICATIONS, 2014, 5
  • [3] Steric engineering of metal-halide perovskites with tunable optical band gaps
    Marina R. Filip
    Giles E. Eperon
    Henry J. Snaith
    Feliciano Giustino
    Nature Communications, 5
  • [4] Nonempirical hybrid functionals for band gaps of inorganic metal-halide perovskites
    Bischoff, Thomas
    Wiktor, Julia
    Chen, Wei
    Pasquarello, Alfredo
    PHYSICAL REVIEW MATERIALS, 2019, 3 (12):
  • [5] Predictive Determination of Band Gaps of Inorganic Halide Perovskites
    Wiktor, Julia
    Rothlisberger, Ursula
    Pasquarello, Alfredo
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2017, 8 (22): : 5507 - 5512
  • [6] Explainable machine learning for predicting the band gaps of ABX3 perovskites
    Obada, David O.
    Okafor, Emmanuel
    Abolade, Simeon A.
    Ukpong, Aniekan M.
    Dodoo-Arhin, David
    Akande, Akinlolu
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2023, 161
  • [7] Bandgap prediction of metal halide perovskites using regression machine learning models
    Vakharia, V.
    Castelli, Ivano E.
    Bhavsar, Keval
    Solanki, Ankur
    Physics Letters, Section A: General, Atomic and Solid State Physics, 2022, 422
  • [8] Machine learning for high-throughput experimental exploration of metal halide perovskites
    Ahmadi, Mahshid
    Ziatdinov, Maxim
    Zhou, Yuanyuan
    Lass, Eric A.
    Kalinin, Sergei, V
    JOULE, 2021, 5 (11) : 2797 - 2822
  • [9] Machine learning-driven analysis of activation energy for metal halide perovskites
    Patel, Vimi
    Sorathia, Kunjrani
    Unjiya, Kushal
    Patel, Raj Dashrath
    Pandey, Siddhi Vinayak
    Kalam, Abul
    Prochowicz, Daniel
    Akin, Seckin
    Yadav, Pankaj
    DALTON TRANSACTIONS, 2025, 54 (11) : 4637 - 4644
  • [10] Bandgap prediction of metal halide perovskites using regression machine learning models
    Vakharia, V.
    Castelli, Ivano E.
    Bhavsar, Keval
    Solanki, Ankur
    PHYSICS LETTERS A, 2022, 422