Use of machine learning to assess safety liabilities: An industry perspective

被引:0
|
作者
Subramanian, V. [1 ]
机构
[1] AstraZeneca, Clin Pharmacol & Safety Sci, Molndal, Sweden
关键词
D O I
暂无
中图分类号
R99 [毒物学(毒理学)];
学科分类号
100405 ;
摘要
P06-24
引用
收藏
页码:S111 / S112
页数:2
相关论文
共 50 条
  • [1] An industry perspective on machine learning
    Giulia Pacchioni
    Nature Reviews Materials, 2021, 6 : 648 - 649
  • [2] An industry perspective on machine learning
    Pacchioni, Giulia
    NATURE REVIEWS MATERIALS, 2021, 6 (08) : 648 - 649
  • [3] Industry Perspective on Artificial Intelligence/Machine Learning in Pharmacovigilance
    Kassekert, Raymond
    Grabowski, Neal
    Lorenz, Denny
    Schaffer, Claudia
    Kempf, Dieter
    Roy, Promit
    Kjoersvik, Oeystein
    Saldana, Griselda
    ElShal, Sarah
    DRUG SAFETY, 2022, 45 (05) : 439 - 448
  • [4] Industry Perspective on Artificial Intelligence/Machine Learning in Pharmacovigilance
    Raymond Kassekert
    Neal Grabowski
    Denny Lorenz
    Claudia Schaffer
    Dieter Kempf
    Promit Roy
    Oeystein Kjoersvik
    Griselda Saldana
    Sarah ElShal
    Drug Safety, 2022, 45 : 439 - 448
  • [5] A continuous in silico learning strategy to identify safety liabilities in compounds used in the leather and textile industry
    March-Vila, Eric
    Ferretti, Giacomo
    Terricabras, Emma
    Ardao, Ines
    Brea, Jose Manuel
    Varela, Maria Jose
    Arana, Alvaro
    Rubiolo, Juan Andres
    Sanz, Ferran
    Loza, Maria Isabel
    Sanchez, Laura
    Alonso, Hector
    Pastor, Manuel
    ARCHIVES OF TOXICOLOGY, 2023, 97 (04) : 1091 - 1111
  • [6] A continuous in silico learning strategy to identify safety liabilities in compounds used in the leather and textile industry
    Eric March-Vila
    Giacomo Ferretti
    Emma Terricabras
    Inés Ardao
    José Manuel Brea
    María José Varela
    Álvaro Arana
    Juan Andrés Rubiolo
    Ferran Sanz
    María Isabel Loza
    Laura Sánchez
    Héctor Alonso
    Manuel Pastor
    Archives of Toxicology, 2023, 97 : 1091 - 1111
  • [7] Uncertainty in Machine Learning: A Safety Perspective on Autonomous Driving
    Shafaei, Sina
    Kugele, Stefan
    Osman, Mohd Hafeez
    Knoll, Alois
    COMPUTER SAFETY, RELIABILITY, AND SECURITY, SAFECOMP 2018, 2018, 11094 : 458 - 464
  • [8] An Industry Perspective on the use of Forced Degradation Studies to Assess Comparability of Biopharmaceuticals
    Campbell, John M.
    Colombo, Stefano
    Doyle, Jamie L.
    Filoti, Dana I.
    Huebnere, Goran
    Magnenat, Laurent
    Nowinski, Ann K.
    Pavon, Jorge Alex
    Singh, Surinder M.
    Vo, Laila R.
    Woods, Joshua M.
    Stokes, Elaine S. E.
    JOURNAL OF PHARMACEUTICAL SCIENCES, 2024, 113 (03) : 505 - 512
  • [9] The Use of Machine Learning Techniques to Assess Damage in Critical Infrastructure
    Terra, M. A.
    Pereira, R. A.
    Sanchez, L. F. M.
    Noel, M.
    Junior, W. R.
    MAINTENANCE, SAFETY, RISK, MANAGEMENT AND LIFE-CYCLE PERFORMANCE OF BRIDGES, 2018, : 2053 - 2060
  • [10] When not to use machine learning: A perspective on potential and limitations
    Carbone, Matthew R.
    MRS BULLETIN, 2022, 47 (09) : 968 - 974