Kirwan surjectivity and Lefschetz-Sommese theorems for a generalized hyperkahler reduction

被引:0
|
作者
Fisher, Jonathan
Jeffrey, Lisa [1 ]
Malusa, Alessandro [1 ]
Rayan, Steven [2 ]
机构
[1] Univ Toronto, Dept Math, Toronto, ON, Canada
[2] Univ Saskatchewan, Ctr Quantum Topol & Its Applicat quanTA, Dept Math & Stat, Saskatoon, SK, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Generalized hyperkahler reduction; Kirwan surjectivity; Lefschetz-Sommese theorem; Morse-Bott theory; Semi-linear group action; Trihamiltonian torus action; MORSE-THEORY; NORM-SQUARE; COHOMOLOGY;
D O I
10.1007/s10711-023-00831-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a compact Lie group. We study a class of Hamiltonian (G x S-1)-manifolds decorated with a function s with certain equivariance properties, under conditions on the G-action which we call of (semi-)linear type. In this context, a close analogue of hyperkahler reduction is defined, and our main result establishes surjectivity of an appropriate analogue of Kirwan's map. As a particular case, our setting includes a class of hyperkahler manifolds with trihamiltonian torus actions, to which our surjectivity result applies.
引用
下载
收藏
页数:15
相关论文
共 7 条