Numerical Simulation Study on Underground Gas Storage with Cushion Gas Partially Replaced with Carbon Dioxide

被引:3
|
作者
Kowalski, Jan [1 ]
Klimkowski, Lukasz [1 ]
Nagy, Stanislaw [1 ]
机构
[1] AGH Univ Sci & Technol, Fac Drilling Oil & Gas, Al Mickiewicza 30, PL-30059 Krakow, Poland
关键词
CCUS; carbon capture; utilization; and storage; underground gas storage with carbon dioxide as cushion gas; CAPACITY; POLAND;
D O I
10.3390/en16145248
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Carbon dioxide capture, use, and storage (CCUS) issues are currently gaining more attention due to climate change. One of the CCUS methods may be the use of CO2 as cushion gas in underground gas storage (UGS). Typically, high-permeability structures are preferable for gas storage purposes. High permeability ensures good flow in reservoirs and well bottom-hole pressure maintenance. However, in the case of the use of CO2 as a part of the cushion gas, it mixes with natural gas within the reservoir pore space, and high permeability, with the resulting "ease of flow", can accelerate the migration of CO2 to the near-well zone. For this reason, the analysis of the effect of permeability on CO2 content in withdrawal gas and the overall performance of UGS seems to be of high importance. In this study, we used a compositional numerical simulator to evaluate the effects of not only permeability but also pore structure on gas storage of this type. The simulations covered depletion of the reservoir and 10 cycles of UGS operation. Our results show that the structure (and thus permeability) has a great influence on the migration of CO2 within a reservoir, the mixing zone, and CO2 content in withdrawal gas.
引用
收藏
页数:19
相关论文
共 50 条