A Gated Content-Oriented Residual Dense Network for Hyperspectral Image Super-Resolution

被引:1
|
作者
Hu, Jing [1 ]
Li, Tingting [1 ]
Zhao, Minghua [1 ]
Wang, Fei [1 ]
Ning, Jiawei [1 ]
机构
[1] Xian Univ Technol, Sch Comp Sci & Engn, Shaanxi Key Lab Network Comp & Secur Technol, Xian 710048, Peoples R China
基金
中国国家自然科学基金;
关键词
hyperspectral image; super-resolution; content-oriented residual dense network; gating mechanism; CLASSIFICATION; RESOLUTION;
D O I
10.3390/rs15133378
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Limited by the existing imagery sensors, a hyperspectral image (HSI) is characterized by its high spectral resolution but low spatial resolution. HSI super-resolution (SR) aims to enhance the spatial resolution of the HSIs without modifying the equipment and has become a hot issue for HSI processing. In this paper, inspired by two important observations, a gated content-oriented residual dense network (GCoRDN) is designed for the HSI SR. To be specific, based on the observation that the structure and texture exhibit different sensitivities to the spatial degradation, a content-oriented network with two branches is designed. Meanwhile, a weight-sharing strategy is merged in the network to preserve the consistency in the structure and the texture. In addition, based on the observation of the super-resolved results, a gating mechanism is applied as a form of post-processing to further enhance the SR performance. Experimental results and data analysis on both ground-based HSIs and airborne HSIs have demonstrated the effectiveness of the proposed method.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Residual Dense Network for Image Super-Resolution
    Zhang, Yulun
    Tian, Yapeng
    Kong, Yu
    Zhong, Bineng
    Fu, Yun
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 2472 - 2481
  • [2] Dense-Gated Network for Image Super-Resolution
    Shumin Fan
    Tianyu Song
    Pengpeng Li
    Jiyu Jin
    Guiyue Jin
    Zhongmin Zhu
    Neural Processing Letters, 2023, 55 : 11845 - 11861
  • [3] Dense-Gated Network for Image Super-Resolution
    Fan, Shumin
    Song, Tianyu
    Li, Pengpeng
    Jin, Jiyu
    Jin, Guiyue
    Zhu, Zhongmin
    NEURAL PROCESSING LETTERS, 2023, 55 (09) : 11845 - 11861
  • [4] Hyperspectral Image Super-Resolution via Deep Image Gradient Guided Residual Dense Network
    Zhao, Minghua
    Ning, Jiawei
    Hu, Jing
    Li, Tingting
    THIRTEENTH INTERNATIONAL CONFERENCE ON GRAPHICS AND IMAGE PROCESSING (ICGIP 2021), 2022, 12083
  • [5] A Spectral Grouping and Attention-Driven Residual Dense Network for Hyperspectral Image Super-Resolution
    Liu, Denghong
    Li, Jie
    Yuan, Qiangqiang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (09): : 7711 - 7725
  • [6] RBDN: Residual Bottleneck Dense Network for Image Super-Resolution
    An, Zeyu
    Zhang, Junyuan
    Sheng, Ziyu
    Er, Xuanhe
    Lv, Junjie
    IEEE ACCESS, 2021, 9 : 103440 - 103451
  • [7] Deep Residual Dense Network for Single Image Super-Resolution
    Musunuri, Yogendra Rao
    Kwon, Oh-Seol
    ELECTRONICS, 2021, 10 (05) : 1 - 15
  • [8] Deep Residual Convolutional Neural Network for Hyperspectral Image Super-Resolution
    Wang, Chen
    Liu, Yun
    Bai, Xiao
    Tang, Wenzhong
    Lei, Peng
    Zhou, Jun
    IMAGE AND GRAPHICS (ICIG 2017), PT III, 2017, 10668 : 370 - 380
  • [9] Deep Residual-Dense Attention Network for Image Super-Resolution
    Qin, Ding
    Gu, Xiaodong
    NEURAL INFORMATION PROCESSING, ICONIP 2019, PT V, 2019, 1143 : 3 - 10
  • [10] Residual Dense Information Distillation Network for Single Image Super-Resolution
    Chen, Qiaosong
    Li, Jinxin
    Duan, Bolin
    Pu, Liu
    Deng, Xin
    Wang, Jin
    2019 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC), 2019, : 500 - 505