HELLINGER AND TOTAL VARIATION DISTANCE IN APPROXIMATING LeVY DRIVEN SDES

被引:0
|
作者
Clement, Emmanuelle [1 ]
机构
[1] Univ Paris Est Creteil, Univ Gustave Eiffel, CNRS, LAMA UMR 8050, Creteil, France
来源
ANNALS OF APPLIED PROBABILITY | 2023年 / 33卷 / 03期
关键词
Levy process; stable process; stochastic differential equation; total variation; Hellinger distance; STOCHASTIC DIFFERENTIAL-EQUATIONS; EULER APPROXIMATION; CONVERGENCE; DIFFUSION; EXISTENCE; SCHEME;
D O I
10.1214/22-AAP1863
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we get some convergence rates in total variation distance in approximating discretized paths of Levy driven stochastic differential equa-tions, assuming that the driving process is locally stable. The particular case of the Euler approximation is studied. Our results are based on sharp local estimates in Hellinger distance obtained using Malliavin calculus for jump processes.
引用
收藏
页码:2176 / 2209
页数:34
相关论文
共 50 条
  • [1] On Approximating Total Variation Distance
    Bhattacharyya, Arnab
    Gayen, Sutanu
    Meel, Kuldeep S.
    Myrisiotis, Dimitrios
    Pavan, A.
    Vinodchandran, N. V.
    PROCEEDINGS OF THE THIRTY-SECOND INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2023, 2023, : 3479 - 3487
  • [2] On Deterministically Approximating Total Variation Distance
    Feng, Weiming
    Liu, Liqiang
    Liu, Tianren
    PROCEEDINGS OF THE 2024 ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, SODA, 2024, : 1766 - 1791
  • [3] Algebraic ergodicity for SDEs driven by Levy processes
    Song, Yan-Hong
    STATISTICS & PROBABILITY LETTERS, 2016, 119 : 108 - 115
  • [5] Wasserstein and total variation distance between marginals of Levy processes
    Mariucci, Ester
    Reiss, Markus
    ELECTRONIC JOURNAL OF STATISTICS, 2018, 12 (02): : 2482 - 2514
  • [6] Stochastic Approximation Procedures for Levy-Driven SDEs
    Seidler, Jan
    Tybl, Ondrej
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2023, 197 (02) : 817 - 837
  • [7] Regularity of density for SDEs driven by degenerate Levy noises
    Song, Yulin
    Zhang, Xicheng
    ELECTRONIC JOURNAL OF PROBABILITY, 2015, 20 : 1 - 27
  • [8] Stochastic PDEs in S′ for SDEs driven by Levy noise
    Bhar, Suprio
    Bhaskaran, Rajeev
    Sarkar, Barun
    RANDOM OPERATORS AND STOCHASTIC EQUATIONS, 2020, 28 (03) : 217 - 226
  • [9] Nonlinear SDEs driven by Levy processes and related PDEs
    Jourdain, Benjamin
    Meleard, Sylvie
    Woyczynski, Wojbor A.
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2008, 4 : 1 - 29
  • [10] ON TAMED MILSTEIN SCHEMES OF SDES DRIVEN BY LEVY NOISE
    Kumar, Chaman
    Sabanis, Sotirios
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2017, 22 (02): : 421 - 463