Hodge theory on ALG* manifolds

被引:1
|
作者
Chen, Gao [1 ]
Viaclovsky, Jeff [2 ]
Zhang, Ruobing [3 ]
机构
[1] Univ Sci & Technol China, Inst Geometry & Phys, Shanghai 201315, Peoples R China
[2] Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
[3] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
来源
关键词
GRAVITATIONAL INSTANTONS; METRICS; MASS;
D O I
10.1515/crelle-2023-0016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We develop a Fredholm theory for the Hodge Laplacian in weighted spaces on ALG* manifolds in dimension four. We then give several applications of this theory. First, we show the existence of harmonic functions with prescribed asymptotics at infinity. A corollary of this is a non-existence result for ALG* manifolds with non-negative Ricci curvature having group Gamma = {e} at infinity. Next, we prove a Hodge decomposition for the first de Rham cohomology group of an ALG* manifold. A corollary of this is vanishing of the first Betti number for any ALG* manifold with non-negative Ricci curvature. Another application of our analysis is to determine the optimal order of ALG* gravitational instantons.
引用
收藏
页码:189 / 227
页数:39
相关论文
共 50 条
  • [1] HODGE THEORY ON HYPERBOLIC MANIFOLDS
    MAZZEO, R
    PHILLIPS, RS
    DUKE MATHEMATICAL JOURNAL, 1990, 60 (02) : 509 - 559
  • [2] Hodge theory of SKT manifolds
    Cavalcanti, Gil R.
    ADVANCES IN MATHEMATICS, 2020, 374
  • [3] Hodge theory on nearly Kahler manifolds
    Verbitsky, Misha
    GEOMETRY & TOPOLOGY, 2011, 15 (04) : 2111 - 2133
  • [4] Nonlinear Hodge Theory on Manifolds with Boundary
    Iwaniec, T.
    Scott, C.
    Stroffolini, B.
    ANNALI DI MATEMATICA PURA ED APPLICATA, 1999, 177 (01) : 37 - 115
  • [5] Nonlinear Hodge theory on manifolds with boundary
    T. Iwaniec
    C. Scott
    B. Stroffolini
    Annali di Matematica Pura ed Applicata, 1999, 177 : 37 - 115
  • [6] Hodge theory on almost-Hermitian manifolds
    Tardini, Nicoletta
    RIVISTA DI MATEMATICA DELLA UNIVERSITA DI PARMA, 2022, 13 (02): : 419 - 437
  • [7] COHOMOLOGY AND HODGE THEORY ON SYMPLECTIC MANIFOLDS: III
    Tsai, Chung-Jun
    Tseng, Li-Sheng
    Yau, Shing-Tung
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2016, 103 (01) : 83 - 143
  • [8] COHOMOLOGY AND HODGE THEORY ON SYMPLECTIC MANIFOLDS: II
    Tseng, Li-Sheng
    Yau, Shing-Tung
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2012, 91 (03) : 417 - 443
  • [9] Supersymmetry and Hodge theory on Sasakian and Vaisman manifolds
    Ornea, Liviu
    Verbitsky, Misha
    MANUSCRIPTA MATHEMATICA, 2023, 170 (3-4) : 629 - 658
  • [10] Extended Hodge theory for fibred cusp manifolds
    Hunsicker, E.
    JOURNAL OF TOPOLOGY AND ANALYSIS, 2018, 10 (03) : 531 - 562