共 2 条
GAP positions catalytic H-Ras residue Q61 for GTP hydrolysis in molecular dynamics simulations, complicating chemical rescue of Ras deactivation
被引:2
|作者:
Patel, Lara A.
[1
,2
]
Waybright, Timothy J.
[3
]
Stephen, Andrew G.
[3
]
Neale, Chris
[1
]
机构:
[1] Los Alamos Natl Lab, Theoret Biol & Biophys, Los Alamos, NM 87545 USA
[2] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA
[3] Leidos Biomed Res Inc, Natl Canc Inst RAS Initiat, Canc Res Technol Program, Frederick Natl Lab Canc Res, Frederick, MD 21702 USA
基金:
美国国家卫生研究院;
关键词:
RAS;
GAP;
GTPase;
Cancer;
Interface;
GUANOSINE TRIPHOSPHATE HYDROLYSIS;
RECEPTOR TYROSINE KINASE;
ADDITIVE FORCE-FIELD;
PARTICLE MESH EWALD;
ACTIVATING PROTEIN;
CRYSTAL-STRUCTURE;
BIOCHEMICAL-PROPERTIES;
SIGNAL-TRANSDUCTION;
ARGININE-FINGER;
MUTANT ENZYME;
D O I:
10.1016/j.compbiolchem.2023.107835
中图分类号:
Q [生物科学];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
Functional interaction of Ras signaling proteins with upstream, negative regulatory GTPase activating proteins (GAPs) represents a crucial step in cellular decision making related to growth and survival. Key components of the catalytic transition state for Ras deactivation by GAP-accelerated hydrolysis of Ras-bound guanosine triphosphate (GTP) are thought to include an arginine residue from the GAP (the arginine finger), a glutamine residue from Ras (Q61), and a water molecule that is likely coordinated by Q61 to engage in nucleophilic attack on GTP. Here, we use in-vitro fluorescence experiments to show that 0.1-100 mM concentrations of free arginine, imidazole, and other small nitrogenous molecule fail to accelerate GTP hydrolysis, even in the presence of the catalytic domain of a mutant GAP lacking its arginine finger (R1276A NF1). This result is surprising given that imidazole can chemically rescue enzyme activity in arginine-to-alanine mutant protein tyrosine kinases (PTKs) that share many active site components with Ras/GAP complexes. Complementary all-atom molecular dynamics (MD) simulations reveal that an arginine finger GAP mutant still functions to enhance Ras Q61-GTP interaction, though less extensively than wild-type GAP. This increased Q61-GTP proximity may promote more frequent fluctuations into configurations that enable GTP hydrolysis as a component of the mechanism by which GAPs accelerate Ras deactivation in the face of arginine finger mutations. The failure of small molecule analogs of arginine to chemically rescue catalytic deactivation of Ras is consistent with the idea that the influence of the GAP goes beyond the simple provision of its arginine finger. However, the failure of chemical rescue in the presence of R1276A NF1 suggests that the GAPs arginine finger is either unsusceptible to rescue due to exquisite positioning or that it is involved in complex multivalent interactions. Therefore, in the context of oncogenic Ras proteins with mutations at codons 12 or 13 that inhibit arginine finger penetration toward GTP, drug-based chemical rescue of GTP hydrolysis may have bifunctional chemical/geometric requirements that are more difficult to satisfy than those that result from arginine-to-alanine mutations in other enzymes for which chemical rescue has been demonstrated.
引用
收藏
页数:12
相关论文