BSTG-Trans: A Bayesian Spatial-Temporal Graph Transformer for Long-Term Pose Forecasting

被引:2
|
作者
Mo, Shentong [1 ]
Xin, Miao [2 ]
机构
[1] Carnegie Mellon Univ, Elect & Comp Engn, Pittsburgh, PA 15213 USA
[2] Chinese Acad Sci, Inst Automat, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
Long-term forecasting; spatial-temporal graph transformer; Bayesian transformer; uncertainty estimation;
D O I
10.1109/TMM.2023.3269219
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Human pose forecasting that aims to predict the body poses happening in the future is an important task in computer vision. However, long-term pose forecasting is particularly challenging because modeling long-range dependencies across the spatial-temporal level is hard for joint-based representation. Another challenge is uncertainty prediction since the future prediction is not a deterministic process. In this article, we present a novel <bold>B</bold>ayesian <bold>S</bold>patial-<bold>T</bold>emporal <bold>G</bold>raph <bold>Trans</bold>former (BSTG-Trans) for predicting accurate, diverse, and uncertain future poses. First, we apply a spatial-temporal graph transformer as an encoder and a temporal-spatial graph transformer as a decoder for modeling the long-range spatial-temporal dependencies across pose joints to generate the long-term future body poses. Furthermore, we propose a Bayesian sampling module for uncertainty quantization of diverse future poses. Finally, a novel uncertainty estimation metric, namely Uncertainty Absolute Error is introduced for measuring both the accuracy and uncertainty of each predicted future pose. We achieve state-of-the-art performance against other baselines on Human3.6 M and HumanEva-I in terms of accuracy, diversity, and uncertainty for long-term pose forecasting. Moreover, our comprehensive ablation studies demonstrate the effectiveness and generalization of each module proposed in our BSTG-Trans.
引用
收藏
页码:673 / 686
页数:14
相关论文
共 50 条
  • [1] Spatial-temporal Graph Transformer Network for Spatial-temporal Forecasting
    Dao, Minh-Son
    Zetsu, Koji
    Hoang, Duy-Tang
    Proceedings - 2024 IEEE International Conference on Big Data, BigData 2024, 2024, : 1276 - 1281
  • [2] Long-term Wind Power Forecasting with Hierarchical Spatial-Temporal Transformer
    Zhang, Yang
    Liu, Lingbo
    Xiong, Xinyu
    Li, Guanbin
    Wang, Guoli
    Lin, Liang
    PROCEEDINGS OF THE THIRTY-SECOND INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2023, 2023, : 6308 - 6316
  • [3] STPSformer: Spatial-Temporal ProbSparse Transformer for Long-Term Traffic Flow Forecasting
    Wang, Zhanquan (zhqwang@ecust.edu.cn), 1600, Institute of Electrical and Electronics Engineers Inc.
  • [4] A spatial-temporal graph gated transformer for traffic forecasting
    Bouchemoukha, Haroun
    Zennir, Mohamed Nadjib
    Alioua, Ahmed
    TRANSACTIONS ON EMERGING TELECOMMUNICATIONS TECHNOLOGIES, 2024, 35 (07):
  • [5] Hybrid Spatial-Temporal Graph Convolutional Network for Long-Term Traffic Flow Forecasting
    Wu, Zihao
    Lou, Ping
    2023 IEEE 8TH INTERNATIONAL CONFERENCE ON BIG DATA ANALYTICS, ICBDA, 2023, : 224 - 229
  • [6] Spatial-Temporal Graph Sandwich Transformer for Traffic Flow Forecasting
    Fan, Yujie
    Yeh, Chin-Chia Michael
    Chen, Huiyuan
    Wang, Liang
    Zhuang, Zhongfang
    Wang, Junpeng
    Dai, Xin
    Zheng, Yan
    Zhang, Wei
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES: APPLIED DATA SCIENCE AND DEMO TRACK, ECML PKDD 2023, PT VII, 2023, 14175 : 210 - 225
  • [7] Adaptive Graph Spatial-Temporal Transformer Network for Traffic Forecasting
    Feng, Aosong
    Tassiulas, Leandros
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 3933 - 3937
  • [8] Graph enhanced spatial-temporal transformer for traffic flow forecasting
    Kong, Weishan
    Ju, Yanni
    Zhang, Shiyuan
    Wang, Jun
    Huang, Liwei
    Qu, Hong
    APPLIED SOFT COMPUTING, 2025, 170
  • [9] STLGCN: Spatial-Temporal Graph Convolutional Network for Long Term Traffic Forecasting
    Chen, Xuewen
    Peng, Peng
    Tang, Haina
    BIG DATA TECHNOLOGIES AND APPLICATIONS, EAI INTERNATIONAL CONFERENCE, BDTA 2023, 2024, 555 : 49 - 61
  • [10] Short-term wind speed forecasting based on spatial-temporal graph transformer networks
    Pan, Xiaoxin
    Wang, Long
    Wang, Zhongju
    Huang, Chao
    ENERGY, 2022, 253