Accurate dynamic quantitative phase imaging using multi-wavelength multiplexing

被引:1
|
作者
Fan, Chen [1 ]
Li, Junxiang [1 ]
Du, Yijun [1 ]
Hu, Zirui [1 ]
Chen, Huan [1 ]
Zhang, Gaopeng [2 ]
Zhang, Lu [1 ]
Zhao, Zixin [1 ]
Zhao, Hong [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Mech Engn, State Key Lab Mfg Syst Engn, Xian 710049, Peoples R China
[2] Chinese Acad Sci, Xian Inst Opt & Precis Mech, Xian 710119, Peoples R China
基金
中国国家自然科学基金;
关键词
Quantitative phase imaging (QPI); Dynamic phase measurement; Computational imaging; Phase retrieval; DIGITAL HOLOGRAPHIC MICROSCOPY; OF-INTENSITY EQUATION; SHACK-HARTMANN; TRANSPORT; RETRIEVAL; FIELD; ALGORITHM; FILTER; CELLS;
D O I
10.1016/j.optlaseng.2023.107757
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present a novel, accurate, full-filed, dynamic quantitative phase imaging (QPI) technique by using multi-wavelength multiplexing and multi-plane iterative phase retrieval algorithm. In our method, a liquid crystal spatial light modulator is employed to flexibly generate multiple defocus intensity images at once, using its adjustable phase modulation characteristics of different wavelengths. Then these images contained at different wavelengths are captured by two color cameras with single exposure. To achieve accurate QPI, a multi-plane iterative phase reconstruction algorithm is also proposed based on transport of intensity equation (TIE). Finally, with these multiple defocus images, an accurate dynamic phase result can be provided by our approach. In addition, the errors caused by color coupling of color camera and chromatic aberration of the optical system are both analyzed and effectively compensated. Experiments conducted on the phase plate, living human colorectal cancer cells and human red blood cells well demonstrate the accuracy, dynamic measurement ability and flexibility of our method.
引用
收藏
页数:8
相关论文
empty
未找到相关数据