Hypercyclic composition operators with automorphisms of the upper half-plane

被引:0
|
作者
Almohammedali, Fadelah [1 ]
Chan, Kit C. [2 ]
机构
[1] King Faisal Univ, Coll Sci, Math & Stat Dept, POB 400 Post Code 31982, Al Hasa, Eastern Provinc, Saudi Arabia
[2] Bowling Green State Univ, Dept Math & Stat, Bowling Green, OH 43403 USA
关键词
Hypercyclic operator; Universal operators; Composition operator; Automorphism; Upper half-plane; Simply connected region; SPACES;
D O I
10.1016/j.jmaa.2022.126745
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
On the Frechet space H(P) of all holomorphic functions on the open upper half-plane P, we study universal sequences of composition operators C-sigma n : H(P) -> H(P) given by automorphisms sigma(n)(z) =(a(n)z+ b(n))/(c(n)z+ d(n)) of P, where a(n), b(n), c(n), d(n) is an element of R with the normalization a(n)d(n) - b(n)c(n) = 1. We show that a sequence C-sigma n : H(P) -> H(P) is universal if and only if lim sup{|a(n)| +|b(n)| +|c(n)| +|d(n)|} = infinity, which in turn is equivalent to the existence of a point zeta in R boolean OR{infinity} such that some subsequence sigma(nk)(z) -> zeta uniformly on compact subsets of P. Applying these conditions to the case when each sigma(n) is the n-fold composition sigma(n)(z) = sigma omicron center dot center dot center dot omicron sigma(z) of a non-identity automorphism sigma(z) = (az + b)/(cz + d), where a, b, c, d is an element of Rwith the normalization ad - bc = 1, we show that C-sigma is hypercyclic if and only if | a + d| >= 2. Furthermore we obtain an explicit formula, in terms of a, b, c, d, of the point zeta for which sigma(n)(z) -> zeta uniformly on compact subsets of P. Motivated by our results for the region P, we obtain analogous results when the region is the open unit disk. Finally we generalize the aforementioned limit-point result to hypercyclic composition operators with automorphisms on a simply connected region whose complement has a nonempty interior. (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] Composition operators on the Dirichlet space of the upper half-plane
    Sharma, Ajay K.
    Sharma, Mehak
    Raj, Kuldip
    NEW YORK JOURNAL OF MATHEMATICS, 2019, 25 : 198 - 206
  • [2] A note on composition operators in a half-plane
    Bercovici, Hari
    Timotin, Dan
    ARCHIV DER MATHEMATIK, 2012, 99 (06) : 567 - 576
  • [3] A note on composition operators in a half-plane
    Hari Bercovici
    Dan Timotin
    Archiv der Mathematik, 2012, 99 : 567 - 576
  • [4] WEIGHTED COMPOSITION OPERATORS BETWEEN GROWTH SPACES OF THE UPPER HALF-PLANE
    Stevic, Stevo
    Sharma, Ajay K.
    UTILITAS MATHEMATICA, 2011, 84 : 265 - 272
  • [5] SIMILARITY TO AN ISOMETRY OF COMPOSITION OPERATORS ON THE HALF-PLANE
    Elliott, Sam
    OPERATORS AND MATRICES, 2012, 6 (03): : 503 - 510
  • [6] Difference of composition operators over the half-plane
    Pang, Changbao
    Wang, Maofa
    SCIENCE CHINA-MATHEMATICS, 2020, 63 (11) : 2299 - 2320
  • [7] Composition operators on Hardy spaces of a half-plane
    Elliott, Sam
    Jury, Michael T.
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2012, 44 : 489 - 495
  • [8] Difference of composition operators over the half-plane
    Changbao Pang
    Maofa Wang
    Science China Mathematics, 2020, 63 : 2299 - 2320
  • [9] DIFFERENCE OF COMPOSITION OPERATORS OVER THE HALF-PLANE
    Choe, Boo Rim
    Koo, Hyungwoon
    Smith, Wayne
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 369 (05) : 3173 - 3205
  • [10] Difference of composition operators over the half-plane
    Changbao Pang
    Maofa Wang
    Science China(Mathematics), 2020, 63 (11) : 2299 - 2320