Improving the performance of a modified solar distiller with phase change material and parabolic trough collector

被引:8
|
作者
Alsehli, Mishal [1 ]
机构
[1] Taif Univ, Coll Engn, Dept Mech Engn, POB 11099, Taif 21944, Saudi Arabia
关键词
Collector; Condensation; Separation; Distillation; Phase change material; STILL; SYSTEM;
D O I
10.1007/s11356-022-24238-4
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The solar stills can solve the problem of freshwater shortage for the people living in remote areas. Through this work, the performance of hybrid solar desalination arrangement was investigated. The system comprised of parabolic trough solar collector, automatic solar tracking system, separation room, modified solar still, two condensation units, feed water tank, and supplementary and measuring tools. The effect of using various water flow rates on the effectiveness of parabolic trough solar collector was tested. Also, the influences of integrating condenser to the modified solar still with and without phase change material were studied. The experimental results revealed that the best flow rate for parabolic trough solar collector was obtained as 10 L/h (100 L/day), where its effectivity was 61%. Under this condition, the obtained freshwater was around 61 L/day from a total saline water of 100 L/day. In addition, integrating a condenser to the modified solar still improved its productivity. So, the total yields of conventional and modified solar stills were 2500 and 5145 mL/m(2).day, respectively. Therefore, the distillate of modified solar still was improved by 105.8% as compared to that of the conventional solar still due to using the hot feed water and external condenser. Moreover, using phase change material enhanced the modified solar still yield. The total yield of conventional solar still and modified solar still with hot feed water, condenser, and phase change material was 2575 and 6150 mL/m(2).day, respectively. Consequently, the productivity of the modified solar still with hot feed water, condenser, and phase change material was improved by around 138.83% over that of the conventional solar still. Finally, the conventional solar still had an average efficiency of 31.5%. Also, when using the hot feed water and external condenser with the modified solar still, the thermal efficiency was reported as 49.7%. Also, the modified solar still with hot water, condenser, and phase change material had a thermal efficiency of 56.5%. Finally, the water costs of 1 L from the CSS and MSS are 0.063 $ and 0.050 $, respectively.
引用
收藏
页码:32710 / 32721
页数:12
相关论文
共 50 条
  • [31] PERFORMANCE ANALYSIS OF A PARABOLIC TROUGH SOLAR COLLECTOR WITH A POROUS ABSORBER RECEIVER
    GRALD, EW
    KUEHN, TH
    SOLAR ENERGY, 1989, 42 (04) : 281 - 292
  • [32] Studies on Thermal Performance of Closed Type Parabolic Trough Solar Collector
    Qiu, Zhong-zhu
    Li, Peng
    Gong, Shao-lin
    Wang, Ye
    Guo, Wen-wen
    He, Jia
    RENEWABLE AND SUSTAINABLE ENERGY, PTS 1-7, 2012, 347-353 : 812 - +
  • [33] Performance analysis of parabolic trough solar collector by varying the absorber surface
    Suppan, Dinesh Kumar
    Subramanian, R. Siva
    INTERNATIONAL JOURNAL OF AMBIENT ENERGY, 2020, 43 (01) : 1528 - 1532
  • [34] Modeling and performance evaluation of parabolic trough solar collector desalination system
    Arun, C. A.
    Sreekumar, P. C.
    MATERIALS TODAY-PROCEEDINGS, 2018, 5 (01) : 780 - 788
  • [35] Performance of PVT solar collector with compound parabolic concentrator and phase change materials
    Al Imam, M. F. I.
    Beg, R. A.
    Rahman, M. S.
    Khan, M. Z. H.
    ENERGY AND BUILDINGS, 2016, 113 : 139 - 144
  • [36] Investigating the thermo-economic performance and modeling of a parabolic solar collector with phase change material in the receiver tube in a solar desalination
    Seifi, Jhina
    Samimi-Akhijahani, Hadi
    Salami, Payman
    DESALINATION, 2024, 572
  • [37] Optimization of parabolic trough solar collector system
    Odeh, SD
    Morrison, GL
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2006, 30 (04) : 259 - 271
  • [38] Design of Solar Parabolic Trough Collector by FEM
    Tao, Lei
    Ling, Xiang
    Zhu, Yuezhao
    DETC 2008: PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATIONAL IN ENGINEERING CONFERENCE, VOL 3, PTS A AND B: 28TH COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2009, : 375 - 380
  • [39] Optical simulation of a parabolic solar trough collector
    Grena, Roberto
    INTERNATIONAL JOURNAL OF SUSTAINABLE ENERGY, 2010, 29 (01) : 19 - 36
  • [40] A detailed review on solar parabolic trough collector
    Upadhyay, Bhargav H.
    Patel, Amitkumar J.
    Ramana, P. V.
    INTERNATIONAL JOURNAL OF AMBIENT ENERGY, 2019, 43 (01) : 176 - 196