Semisupervised Cross-Scale Graph Prototypical Network for Hyperspectral Image Classification

被引:52
|
作者
Xi, Bobo [1 ,2 ]
Li, Jiaojiao [1 ,2 ]
Li, Yunsong [1 ]
Song, Rui [1 ]
Xiao, Yuchao [3 ]
Du, Qian [4 ]
Chanussot, Jocelyn [5 ]
机构
[1] Xidian Univ, Sch Telecommun Engn, State Key Lab Integrated Serv Networks, Xian 710071, Peoples R China
[2] CAS Key Lab Spectral Imaging Technol, Xian 710119, Peoples R China
[3] Beijing Univ Posts & Telecommun, Sch Artificial Intelligence, Beijing 100876, Peoples R China
[4] Mississippi State Univ, Dept Elect & Comp Engn, Starkville, MS 39762 USA
[5] Univ Grenoble Alpes, INRIA, CNRS, Grenoble INP,LJK, F-38000 Grenoble, France
关键词
Convolution; Prototypes; Hyperspectral imaging; Feature extraction; Chebyshev approximation; Training; Telecommunications; Cross-scale; graph convolutional network (GCN); hyperspectral image (HSI) classification; semisupervised learning (SSL); CONVOLUTIONAL NETWORKS; NEURAL-NETWORKS; FRAMEWORK;
D O I
10.1109/TNNLS.2022.3158280
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In practice, the acquirement of labeled samples for hyperspectral image (HSI) is time-consuming and labor-intensive. It frequently induces the trouble of model overfitting and performance degradation for the supervised methodologies in HSI classification (HSIC). Fortunately, semisupervised learning can alleviate this deficiency, and graph convolutional network (GCN) is one of the most effective semisupervised approaches, which propagates the node information from each other in a transductive manner. In this study, we propose a cross-scale graph prototypical network (X-GPN) to achieve semisupervised high-quality HSIC. Specifically, considering the multiscale appearance of the land covers in the same remotely captured scene, we involve the neighborhoods of different scales to construct the adjacency matrices and simultaneously design a multibranch framework to investigate the abundant spectral-spatial features through graph convolutions. Furthermore, to exploit the complementary information between different scales, we simply employ the standard 1-D convolution to excavate the dependence of the intranode and concatenate the output with the features generated from other scales. Intuitively, different branches for various samples should have different importance to predict their categories. Thus, we develop a self-branch attentional addition (SBAA) module to adaptively highlight the most critical features produced by multiple branches. In addition, different from previous GCN for HSIC, we devise an innovative prototypical layer comprising a distance-based cross-entropy (DCE) loss function and a novel temporal entropy-based regularizer (TER), which can enhance the discrimination and representativeness of the node features and prototypes actively. Extensive experiments demonstrate that the proposed X-GPN is superior to the classic and state-of-the-art (SOTA) methods in terms of the classification performance.
引用
收藏
页码:9337 / 9351
页数:15
相关论文
共 50 条
  • [1] Semisupervised graph convolutional network for hyperspectral image classification
    Liu, Bing
    Gao, Kuiliang
    Yu, Anzhu
    Guo, Wenyue
    Wang, Ruirui
    Zuo, Xibing
    JOURNAL OF APPLIED REMOTE SENSING, 2020, 14 (02):
  • [2] Semisupervised Classification of Hyperspectral Image Based on Graph Convolutional Broad Network
    Wang, Haoyu
    Cheng, Yuhu
    Chen, C. L. Philip
    Wang, Xuesong
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 2995 - 3005
  • [3] Spectral-Spatial Graph Attention Network for Semisupervised Hyperspectral Image Classification
    Zhao, Zhengang
    Wang, Hao
    Yu, Xianchuan
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [4] A Semisupervised Siamese Network for Hyperspectral Image Classification
    Jia, Sen
    Jiang, Shuguo
    Lin, Zhijie
    Xu, Meng
    Sun, Weiwei
    Huang, Qiang
    Zhu, Jiasong
    Jia, Xiuping
    IEEE Transactions on Geoscience and Remote Sensing, 2022, 60
  • [5] A Semisupervised Siamese Network for Hyperspectral Image Classification
    Jia, Sen
    Jiang, Shuguo
    Lin, Zhijie
    Xu, Meng
    Sun, Weiwei
    Huang, Qiang
    Zhu, Jiasong
    Jia, Xiuping
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [6] Semisupervised Hyperspectral Image Classification via Neighborhood Graph Learning
    Im, Daniel Jiwoong
    Taylor, Graham W.
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2015, 12 (09) : 1913 - 1917
  • [7] A Novel Cross-Scale Octave Network for Hyperspectral and Multispectral Image Fusion
    Zhan, Tianming
    Bi, Zuolin
    Wu, Huapeng
    Xu, Chao
    Du, Qian
    Xu, Yang
    Wu, Zebin
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [8] Semisupervised Band Selection With Graph Optimization for Hyperspectral Image Classification
    He, Fang
    Nie, Feiping
    Wang, Rong
    Jia, Weimin
    Zhang, Fenggan
    Li, Xuelong
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (12): : 10298 - 10311
  • [9] L1-GRAPH SEMISUPERVISED LEARNING FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Gu, Yanfeng
    Feng, Kai
    2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, : 1401 - 1404
  • [10] Hyperspectral image classification with multi-scale graph convolution network
    Zhao, Wenzhi
    Wu, Dinghui
    Liu, Yuanlin
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2021, 42 (21) : 8380 - 8397