Facile Preparation of Hydrogel-Coated Surfaces with Antifouling and Salt Resistance for Efficient Solar-Driven Water Evaporation

被引:5
|
作者
Zhang, Xingzhen [1 ,2 ]
Zhou, Shouyong [1 ]
Wang, Zhigang [2 ]
Wei, Xian [2 ]
Zhang, Shenxiang [2 ]
Jin, Jian [1 ,2 ]
机构
[1] Huaiyin Normal Univ, Sch Chem & Chem Engn, Jiangsu Engn Lab Environm Funct Mat, Huaian 223300, Peoples R China
[2] Soochow Univ, Coll Chem Chem Engn & Mat Sci, Jiangsu Key Lab Adv Funct Polymer Design & Applica, Suzhou Key Lab Macromol Design & Precis Synth, Suzhou 215123, Peoples R China
基金
中国国家自然科学基金;
关键词
solar-driven water evaporation; hydrogel; antifouling; salt resistance; photothermal property; DESALINATION; ENERGY; SEPARATION; MEMBRANE;
D O I
10.1021/acsami.3c11299
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Hydrogel-based evaporators are a promising strategy to obtain freshwater from seawater and sewage. However, the time-consuming and energy-consuming methods used in hydrogel preparation, as well as their limited scalability, are major factors that hinder the development of a hydrogel-based evaporator. Herein, a facile and scalable strategy was designed to prepare a hydrogel-coated evaporator to realize efficient solar-driven water evaporation. The hydrogel coating layer is composed of a robust 3D network formed by tannic acid (TA) and poly(vinyl alcohol) (PVA) through a hydrogen bond. With the assistance of TA surface modifier, carbon black (CB) is uniformly distributed within the hydrogel matrix, endowing the coating with remarkable photothermal properties. In addition, Fe3+ is deposited on the surface of the hydrogel coating through metal coordination with TA, further improving the light absorption of the coating. Due to the synergistic effect of CB and Fe3+, the hydrogel-coated foam exhibited excellent photothermal properties. The water evaporation rate reached 3.64 kg m(-2) h(-1) under 1 sun irradiation. Because of the hydration ability of PVA hydrogel and the large porous structure of the foam, the hydrogel-coated foam demonstrated excellent antifouling performance and salt resistance. This study provides a facile method for designing and manufacturing high-performance solar-driven water evaporation materials.
引用
收藏
页码:50196 / 50205
页数:10
相关论文
共 50 条
  • [1] Spongy polyelectolyte hydrogel for efficient Solar-Driven interfacial evaporation with high salt resistance and compression resistance
    Zhao, Jinmin
    Chu, Aqiang
    Chen, Juanli
    Qiao, Pengju
    Fang, Jing
    Yang, Zhensheng
    Duan, Zhongyu
    Li, Hao
    CHEMICAL ENGINEERING JOURNAL, 2024, 485
  • [2] Boosting Efficient Ammonium Rejection and Water Evaporation Rate by Solar-Driven Hydrogel Evaporation
    Wang, Yitong
    Mu, Xiaojiang
    Zhou, Jianhua
    Song, Lingjun
    Li, Xiangyang
    He, Fengmei
    Wang, Xiaoyang
    Miao, Lei
    ADVANCED ENERGY AND SUSTAINABILITY RESEARCH, 2024, 5 (08):
  • [3] Facile Preparation of a Carbon-Based Hybrid Film for Efficient Solar-Driven Interfacial Water Evaporation
    Sun, Hanxue
    Li, Yuanzhen
    Li, Jiyan
    Zhu, Zhaoqi
    Zhang, Wanting
    Liang, Weidong
    Ma, Chonghua
    Li, An
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (28) : 33427 - 33436
  • [4] Facile preparation of a robust porous photothermal membrane with antibacterial activity for efficient solar-driven interfacial water evaporation
    Li, Yaling
    Cui, Xuexue
    Zhao, Mingyu
    Xu, Yunshi
    Chen, Leilei
    Cao, Zhijuan
    Yang, Shuguang
    Wang, Yi
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (02) : 704 - 710
  • [5] Facile Synthesis of Vertically Arranged CNTs for Efficient Solar-Driven Interfacial Water Evaporation
    Su, Lifen
    Liu, Xiaoyu
    Li, Xu
    Yang, Bin
    Wu, Bin
    Xia, Ru
    Qian, Jiasheng
    Zhou, Jianhua
    Miao, Lei
    ACS OMEGA, 2022, 7 (50): : 47349 - 47356
  • [6] Carbonized potato lamella-based hydrogel composite for efficient solar-driven interfacial evaporation with high salt-resistance
    Chen, Yuexin
    Cheng, Long
    Liu, Qiuling
    Chen, Mengya
    Li, Chengping
    Wang, Liang
    Shen, Jiubing
    Senin, Petr
    Yan, Shitan
    Bian, Ting
    APPLIED SURFACE SCIENCE, 2024, 656
  • [7] An integrated highly hydrated cellulose network with a synergistic photothermal effect for efficient solar-driven water evaporation and salt resistance
    Chen, Yu
    Yang, Jin
    Zhu, Lin
    Jia, Xiaohua
    Wang, Sizhe
    Li, Yong
    Song, Haojie
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (27) : 15482 - 15492
  • [8] Facile preparation of high strength aerogel evaporator for efficient solar-driven water purification
    Ni, Anqi
    Lin, Peng
    Wang, Xuemin
    Fu, Danni
    Hua, Shaoguang
    Pei, Dejian
    Li, Shuqin
    Han, Xinya
    Xia, Youyi
    Zhang, Tingting
    SUSTAINABLE MATERIALS AND TECHNOLOGIES, 2022, 32
  • [9] Photothermally enabled MXene hydrogel membrane with integrated solar-driven evaporation and photodegradation for efficient water purification
    Zhang, Baoping
    Wong, Pak Wai
    An, Alicia Kyoungjin
    Chemical Engineering Journal, 2022, 430
  • [10] Photothermally enabled MXene hydrogel membrane with integrated solar-driven evaporation and photodegradation for efficient water purification
    Zhang, Baoping
    Wong, Pak Wai
    An, Alicia Kyoungjin
    CHEMICAL ENGINEERING JOURNAL, 2022, 430