A Review of Recent Improvements, Developments, Effects, and Challenges on Using Phase-Change Materials in Concrete for Thermal Energy Storage and Release

被引:32
|
作者
Rashid, Farhan Lafta [1 ]
Al-Obaidi, Mudhar A. [2 ,3 ]
Dulaimi, Anmar [4 ,5 ]
Bernardo, Luis Filipe Almeida [6 ]
Eleiwi, Muhammad Asmail [7 ,8 ]
Mahood, Hameed B. [9 ,10 ]
Hashim, Ahmed [11 ]
机构
[1] Univ Kerbala, Coll Engn, Petr Engn Dept, Karbala, Iraq
[2] Middle Tech Univ, Tech Inst Baquba, Baquba 32001, Iraq
[3] Middle Tech Univ, Tech Instructor Training Inst, Baghdad 10074, Iraq
[4] Univ Warith Al Anbiyaa, Coll Engn, Karbala 56001, Iraq
[5] Liverpool John Moores Univ, Sch Civil Engn & Built Environm, Liverpool L3 2ET, England
[6] Univ Beira Interior, Dept Civil Engn & Architecture, P-6201001 Covilha, Portugal
[7] Tikrit Univ, Coll Engn, Mech Engn Dept, Tikrit 34001, Iraq
[8] Univ Samarra, Coll Engn, Electromech Engn Dept, Samarra 34010, Iraq
[9] Univ Birmingham, Ctr Sustainable Cooling, Sch Chem Engn, Birmingham B15 2TT, England
[10] Univ Warith Al Anbiyaa, Coll Engn, Karbala 56001, Iraq
[11] Univ Babylon, Coll Educ Pure Sci, Dept Phys, Babylon 51002, Iraq
来源
JOURNAL OF COMPOSITES SCIENCE | 2023年 / 7卷 / 09期
关键词
thermal energy storage; phase change materials; concrete; building; review; CHANGE MATERIALS PCMS; GEOPOLYMER CONCRETE; POTENTIAL APPLICATIONS; NUMERICAL-SIMULATION; PERFORMANCE; BEHAVIOR; CEMENT; SOLIDIFICATION; CONDUCTIVITY; MORTAR;
D O I
10.3390/jcs7090352
中图分类号
TB33 [复合材料];
学科分类号
摘要
Most concrete employs organic phase change materials (PCMs), although there are different types available for more specialised use. Organic PCMs are the material of choice for concrete due to their greater heat of fusion and lower cost in comparison to other PCMs. Phase transition materials are an example of latent heat storage materials (LHSMs) that may store or release thermal energy at certain temperatures. A phase transition occurs when a solid material changes from a solid state to a liquid state and back again when heat is added or removed. It is common knowledge that adding anything to concrete, including PCMs, will affect its performance. The goal of this review is to detail the ways in which PCMs affect certain concrete features. This overview also looks into the current challenges connected with employing PCMs in concrete. The review demonstrates a number of important findings along with the possible benefits that may pave the way for more research and broader applications of PCMs in construction. More importantly, it has been elucidated that the optimum PCM integrated percentage of 40% has doubled the quantity of thermal energy stored and released in concrete. Compared to conventional concrete, the macro-encapsulated PCMs showed thermal dependability, chemical compatibility, and thermal stability due to delaying temperature peaks. Furthermore, the maximum indoor temperature decreases by 1.85 & DEG;C and 3.76 & DEG;C in the test room due to the addition of 15% and 30% PCM composite, respectively. Last but not least, incorporating microencapsulated PCM has shown a positive effect on preventing freeze-thaw damage to concrete roads.
引用
收藏
页数:34
相关论文
共 50 条
  • [1] A review on solar thermal energy storage systems using phase-change materials
    Ram, Satyendra
    Prasad, A. K.
    Hansdah, Dulari
    ENERGY STORAGE, 2024, 6 (01)
  • [2] Recent developments in phase change materials for energy storage applications: A review
    Nazir, Hassan
    Batool, Mariah
    Osorio, Francisco J. Bolivar
    Isaza-Ruiz, Marllory
    Xu, Xinhai
    Vignarooban, K.
    Phelan, Patrick
    Inamuddin
    Kannan, Arunachala M.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2019, 129 : 491 - 523
  • [3] Effectiveness of a thermal energy storage system using phase-change materials
    ElDessouky, H
    AlJuwayhel, F
    ENERGY CONVERSION AND MANAGEMENT, 1997, 38 (06) : 601 - 617
  • [4] Recent Advances in Nanoencapsulated and Nano-Enhanced Phase-Change Materials for Thermal Energy Storage: A Review
    Khlissa, Faical
    Mhadhbi, Mohsen
    Aich, Walid
    Hussein, Ahmed Kadhim
    Alhadri, Muapper
    Selimefendigil, Fatih
    Oztop, Hakan F.
    Kolsi, Lioua
    PROCESSES, 2023, 11 (11)
  • [5] Recent research on conductive phase-change materials for energy storage
    Luyt, A. S.
    EXPRESS POLYMER LETTERS, 2013, 7 (04): : 319 - 319
  • [6] Application of phase change materials for thermal energy storage in concentrated solar thermal power plants: A review to recent developments
    Xu, Ben
    Li, Peiwen
    Chan, Cholik
    APPLIED ENERGY, 2015, 160 : 286 - 307
  • [7] Reactive Phase-Change Materials for Enhanced Thermal Energy Storage
    Drake, Griffin
    Freiberg, Lucas
    AuYeung, Nick
    ENERGY TECHNOLOGY, 2018, 6 (02) : 351 - 356
  • [8] Thermal energy storage using phase change materials in building applications: A review of the recent development
    Sharshir, Swellam W.
    Joseph, Abanob
    Elsharkawy, Marwan
    Hamada, Mohamed A.
    Kandeal, A. W.
    Elkadeem, Mohamed R.
    Thakur, Amrit Kumar
    Ma, Yanbao
    Moustapha, Moustapha Eid
    Rashad, Maher
    Arici, Muesluem
    ENERGY AND BUILDINGS, 2023, 285
  • [9] Carbon-Filled Organic Phase-Change Materials for Thermal Energy Storage: A Review
    Yang, Guijun
    Yim, Yoon-Ji
    Lee, Ji Won
    Heo, Young-Jung
    Park, Soo-Jin
    MOLECULES, 2019, 24 (11):
  • [10] Composite phase-change materials for photo-thermal conversion and energy storage:A review
    Chai, Zongce
    Fang, Minghao
    Min, Xin
    NANO ENERGY, 2024, 124